1 . tính
a.(a+b+c)^2 - (a+b)-c^2
b. CM (ac+bd)^2+(ad-bc)^2 = (a^2b^2) . (c^2+d^2)
cho a, b, c khác 1 ; d thỏa mãn \(ac-a-c=b^2-2b,bd-b-d=c^2-2c\)
chứng minh \(ad+b+c=bc+a+d\)
Đề bài cho a,b,c,d khác 1 phải không?
Vì ac –a-c =b2-2b nên ac–a-c +1=b2-2b+1 hay (a-1).(c-1) =(b-1)2
suy ra: (a-1)/(b-1) =(b-1)/(c-1). (1)
Tương tự ta có (b-1).(d-1) =(c-1)2 suy ra: (b-1)/(c-1) =(c-1)/(d-1) (2)
Từ (1) và (2) suy ra: (a-1)/(b-1) = (c-1)/(d-1) = (a+c-2)/(b+d-2)=(a-c)/(b-d)
Suy ra : (a+c-2). (b-d) = (b+d-2).(a-c)
Khai triển, chuyển vế và rút gọn được: 2bc+2a+2d= 2ad +2b+2c
Suy ra: ad +b+c= bc+a+d
Cho a,b,c khác d, thõa mãn \(ac-a-c=b^2-2b,bd-b-d=c^2-2c\)
C/m : \(ad+b+c=bc+a+d\)
Hình như điều kiện là a, b, c, d khác 1 mới đúng
\(\left\{{}\begin{matrix}ac-a-c=b^2-2b\\bd-b-d=c^2-2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac-a-c+1=b^2-2b+1\\bd-b-d+1=c^2-2c+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-1\right)=\left(b-1\right)^2\\\left(b-1\right)\left(d-1\right)=\left(c-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-1\right)=\left(b-1\right)^2\left(1\right)\\\left(c-1\right)^2=\left(b-1\right)\left(d-1\right)\left(2\right)\end{matrix}\right.\)
Do a, b, c, d khác 1 nên lấy (2) : (1) vế theo vế ta được
\(\Rightarrow\dfrac{c-1}{a-1}=\dfrac{d-1}{b-1}\)
\(\Rightarrow\left(c-1\right)\left(b-1\right)=\left(a-1\right)\left(d-1\right)\)
\(\Leftrightarrow bc-b-c+1=ad-a-d+1\)
\(\Leftrightarrow ad+b+c=bc+a+d\) (ĐPCM)
P/S: Nếu đk không phải là a, b, c, d khác 1 thì xét a,b,c,d bằng 1 thì dễ suy ra đpcm, sau đó xét a,b,c,d khác 1 thì giải như trên
a) Cho tỉ lệ thức a/b=c/d Với b/d khác +-3/2 . Chứng minh:
1)2a+3c/2b+3d=2a-3c/2b-3d.
2)a^2+c^2/b^2+d^2=ac/bd
đặt a/b =c/d =k
=> a=bm , c=dm
=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)
=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)
Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d
câu 2 tương tự nha
Bài 1:
viết dưới dạng tích các tổng sau:
1) ab+ac
2) ab-ac+ad
3) ax-bx-cx+dx
4) a(b+c)-d(b+c)
5) ac-ad+bc-bd
6) ax+by+bx+ay(làm đc cho 1 like)
Bài 2: Chứng tỏ:
1/ (a-b+c)-(a+c)=-b(âm b)
2/ (a+b)-(b-a)+c=2a+c
3/ -(a+b-c)+(a-b-c)=-2b(âm 2b)
4/ a(b+c)-a(b+d)=a(c-d)
5/ a(b-c)+a(d+c)=a(b+d) ( làm đc cho 2 like):))
1 a(b+c)
2 a(b-c+d)
3 x(a-b-c+d)
4 (b+c)(a-d)
5 a(c-d)+b(c-d)
(c-d)(a+b)
6 ax+by+bx+ay
ax+ay+bx+by
a(x+y)+b(x+y)
(x+y)(a+b)
làm được nhiu ây thui, mí bài kia tự làm nhak
hihhhi
bài 2 \
1 (a-b+c)-(a+c)=-b
phá ngoặc
=a-b+c-a-c
=-b
2 làm giống bài 1 í. phá ngoặc hớt, mí bài còn lại cũng lm tương tự
phá ngoặc là được thui :)))))
Bài 2 :
1/ (a - b + c) - (a + c)
= a - b + c - a - c
= a + (-b) + c - a - c
= (a - a) + (-b) + (c - c)
= -b
2/ (a + b) - (b - a) + c =
= a + b - b + a + c
= 2a + (b - b) + c
= 2a + c
3/ -(a + b - c) + (a - b - c)
= -a - b + c + a - b - c
= (-a + a) + (-b - b) + (c - c)
= -2b
4/ a(b + c) - a(b + d)
= ab + ac - (ab + ad)
= ab + ac - ab - ad
= (ab - ab) + ac - ad
= a.(c - d)
5/ a(b - c) + a(d + c)
= ab - ac + ad + ac
= ab + ad + (-ac + ac)
= a(b + d)
Cho tam giác ABC có B=50 độ, A=2B. VẼ đường cao AH, trên AC lấy D sao cho AD=AB. VẼ đc AK. tia AK cắt BC tại M
a. TÍnh số đo goác A,C
b. CM tứ giác AKHB nt
C. CM BD=AC
d. cm BC^2= AB.AC+BC.MC
Cho a/b=c/d Với b/d khác +-3/2 . Chứng minh rằng:
a)2a+3c/2b+3d=2a-3c/2b-3d.
b)a^2+c^2/b^2+d^2=ac/bd
Chứng minh các hằng đẳng thức sau:
a) (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
b) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
Cho a/b=c/d và a,b,c,d khác 0.CM:
a)ac/bd=a2+c2/b2+d2
b)a+2b/b=c+2d/d
HELP ME!!!!!
a)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)
b)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+2=\frac{c}{d}+2\Leftrightarrow\frac{a+2b}{b}=\frac{c+2d}{d}\)(đpcm)
Câu 1:viết dưới dạng các tích tổng sau
1,ab+ac 2,ab-ac+ad 3,ax-bx-cx+dx 4,a(b+c)-d(b+c) 5,ac-ad+bc-bd 6,ax+by+bx+ay Bài2: chứng tỏ
1,(a-b+c)-(a+c)=-b
2,(a+b)-(b-a)+c=2a+c
3,-(a+b-c)+(a-b-c)=-2b
4,a(b+c)-a(b+d)=a(c-d)
5,a(b-c)+a(d+c)=a(b+d)