j) \(x^2+y^2+26+10x-2y=0\)
tìm x,y biết : x^2 + 2y^2+ 2xy+ 10x + 12y+ 26 = 0
<=> [ (x^2+2xy+y^2)+ 2.(x+y).5 +25 ] + (y^2+2y+1)=0
<=> (x+y+5)^2 + (y+1)^2 = 0
<=> x+y+5 = 0 và y+1 = 0
<=> x=-4 và y=-1
Ta có: x2+2y2+2xy+10x+12y+26=0
=> (x2+2xy+y2)+(10x+10y)+25+(y2+2y+1)=0
=> (x+y)2+10(x+y)+25+(y2+2y+1)=0
=> (x+y+5)2+(y+1)2=0
=> (x+y+5)2=(y+1)2=0
=> x+y+5=y+1=0
(+) y+1=0=> y=-1
(+) x+y+5=0 mà y=-1=> x-1+5=0
=> x+4=0=> x=-4
Vậy (x,y)=(-4;-1)
tìm cặp số (x,y) thỏa mãn: x^2 + 10x + 26 + y^2 + 2y = 0
\(x^2+10x+26+y^2+2y=0\)
\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Vậy \(x=-5\)và \(y=-1\)
\(x^2+10x+26+y^2+2y=0\)
\(\Leftrightarrow x^2+10x+25+y^2+2y+1=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Vậy..............
Tìm x, y, z thỏa: x2 + 10x +y2 - 2y +26 + (3z – 6)2 = 0
\(x^2+10x+y^2-2y+26+\left(3z-6\right)^2=0\)
\(\Leftrightarrow x^2+10x+25+y^2-2y+1+\left(3z-6\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y-1\right)^2+\left(3z-6\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y-1=0\\3z-6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=1\\z=2\end{cases}}\)
Tìm x thoa mãn:
x2 + y2 + 26 + 10x + 2y =0
5x2+ y2 - 2xy - 4x + 1 =0
2x2 + 2xy - 4x - 2y + 2 + y2 =0
\(x^2+y^2+26+10x+2y=0\)
\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
x^2+10x +26+y^2 +2y
\(=x^2+10x+25+y^2+2y+1\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
Tim x,y biet:
1)x^2-2x+5+y^2-4y=0
2)4x^2+y^2-20x+26-2y=0
3)x^2+4y^2+13-6x-8y=0
4)4x^2+4x-6y+9x^2+2=0
5)x^2+y^2+6x-10y+34=0
6)25x^2-10x+9y^2-12y+5=0
7)x^2+9y^2-10x-12y+29=0
89x^2+12x+4y62+8y+8=0
9)4x^2+9y^2+20x-6y+26=0
10)3x^2+3y^2+6x-12y+15=0
11)x^2+4y^2+4x-4y+5=0
12)4x^2-12x+y^2-4y+13=0
13)x^2+y^2+2x-6y+10=0
14)4x^2+9y^2-4x+6y+2=0
15)y^2+2y+5-12x+9x^2=0
16)x^2+26+6y+9y^2-10x=0
17)10-6x+12y+9x^2+4y^2=0
18)16x^2+5+8x-4y+y^2=0
19)x^2+9y^2+4x+6y+5=0
20)5+9x^2+9y^2+6y-12x=0
21)x^2+20+9y62+8x-12y=0
22)x^2=4y+4y^2+26-10x=0
23)4y^2+34-10x+12y+x^2=0
24)-10x+y^2-8y+x^2+41=0
25)x^2+9y^2-12y+29-10x=0
26)9x^2+4y^2+4y+5-12x=0
27)4y^2-12x+12y+9x^2=13=0
28)4x^2+25-12x-8y+y^2=0
29)x62+17+4y^2+8x+4y=0
30)4y^2+12y+25+8x+x^2=0
31)x^2+20+9y^2+8x-12y=0
giup mk voi minh can gap ak, cam on cac ban
Tìm số nguyên dương x,y biết:
a) \(x^2+5y^2+2x-4xy-10y-9=0\)
b) \(5x^2+5y^2+8xy+2+2y-2x=0\)
c) \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
d) \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
Tìm GTNN của biểu thức:a)x^2-10x+26+y^2+2y
b)x^2-3x-2
a: =x^2-10x+25+y^2+2y+1
=(x-5)^2+(y+1)^2>=0
Dấu = xảy ra khi x=5 và y=-1
b: x^2-3x-2
=x^2-3x+9/4-17/4
=(x-3/2)^2-17/4>=-17/4
Dấu = xảy ra khi x=3/2
Bài 1: Tính giá trị biểu thức
a) C = x^3 - 9x^2 + 27x - 26 với x = 23
Bài 2: Tìm x , y biết:
a) x^2 + 4y^2 + 6x - 12y + 18 = 0
b) 2x^2 + 2y^2 + 2xy - 10x - 8y + 41 = 0
1. Ta có:
\(x^3-9x^2+27x-26=x^3-2x^2-7x^2+14x+13x-26\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)+13\left(x-2\right)=\left(x-2\right)\left(x^2-7x+13\right)\)
Thay x = 23, ta có: \(C=\left(23-2\right)\left(23^2-7.23+13\right)=8001\)
2.
a) \(x^2+4y^2+6x-12y+18=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-3\right)^2=0\)
Mà \(\left(x-3\right)^2\ge0\) với mọi x, \(\left(2y-3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)và \(\left(2y-3\right)^2=0\Leftrightarrow2y-3=0\Leftrightarrow y=\frac{3}{2}\)
Vậy \(\left(x,y\right)=\left(3;\frac{3}{2}\right)\)
b) \(2x^2+2y^2+2xy-10x-8y+41=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)
.....................................
Rồi giải tương tự như trên