\(\left(x^3+8y^3\right):\left(x+2y\right)=\)
Giải các hệ phương trình sau
\(1)\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{2}\left(8y^2+8y+1\right)\\4\left(x^3-8y^3\right)-6\left(x^2+4y^2\right)+3\left(x+2y\right)-1=0\end{matrix}\right.\)
\(2)\left\{{}\begin{matrix}3\sqrt{17x^2-y^2-6x+4}+x=6\sqrt{2x^2+x+y}-3y+2\\\sqrt{3x^2+xy+1}=\sqrt{x+1}\end{matrix}\right.\)
\(3)\left\{{}\begin{matrix}x^3+\left(2-y\right)x^2+\left(2-3y\right)x=5\left(x+1\right)\\3\sqrt{y+1}=3x^2-14x+14\end{matrix}\right.\)
\(4)\left\{{}\begin{matrix}4x^2=\left(\sqrt{x^2+1}+1\right)\left(x^2-y^3+3y-2\right)\\x^2+\left(y+1\right)^2=2\left(1+\dfrac{1-x^2}{y}\right)\end{matrix}\right.\)
\(5)\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x-1=0\\y^2+7y-17=9x+2\left(x+6\right)\sqrt{5-2y}\end{matrix}\right.\)
\(6)\left\{{}\begin{matrix}2x^2+3=4\left(x^2-2yx^2\right)\sqrt{3-2y}+\dfrac{4x^2+1}{x}\\\left(2x+1\right)\sqrt{2-\sqrt{3-2y}}=\sqrt[3]{2x^2+x^3}+x+2\end{matrix}\right.\)
Tính
a) (3x+y-z)-(-x-2y+6z)
b)$\left(x^3+6x^2+5y^3\right)-\left(-x^3-5x+7y^3\right)$(x3+6x2+5y3)−(−x3−5x+7y3)
c)$\left(5.7x^2y-3,2xy+8y^3\right)-\left(6,9xy-2,3x^2y-8y^3\right)$(5.7x2y−3,2xy+8y3)−(6,9xy−2,3x2y−8y3)
d)$\left(3x^2y-x^3-2xy^2+5\right)+\left(2x^3-3xy^2-x^2y+xy+6\right)$
Tính
a) (3x+y-z)-(-x-2y+6z)
b)\(\left(x^3+6x^2+5y^3\right)-\left(-x^3-5x+7y^3\right)\)
c)\(\left(5.7x^2y-3,2xy+8y^3\right)-\left(6,9xy-2,3x^2y-8y^3\right)\)
d)\(\left(3x^2y-x^3-2xy^2+5\right)+\left(2x^3-3xy^2-x^2y+xy+6\right)\)
\(\left\{{}\begin{matrix}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{matrix}\right.\)
Bài này số to, mũ to nên UCT khá mệt:
Lấy pt (1) - 8 lần pt (2) ta được:
\(\left(x-2\right)^4=\left(y-4\right)^4\Rightarrow\left[{}\begin{matrix}y=x+2\\y=6-x\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{matrix}\right.\)
Câu hỏi của nguyễn thị ngân - Toán lớp 9 - Học trực tuyến OLM
Giải hệ \(\left\{{}\begin{matrix}x^4-y^4=240\\x^3-2y^3=3\left(x^2-4y^2\right)-4\left(x-8y\right)\end{matrix}\right.\)
a)\(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3\)
b) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
c) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
d) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)
=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)
=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)
=(5x)\(^3\)
=5\(^3\).x\(^3\)
=125.x\(^3\)
Làm tính chia :
a) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
b) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
c) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
a)\([\)5(a-b)\(^3\)+2(a-b)\(^2]\):(b-a)\(^2\)
=\([\)5(a-b)\(^3\)+2(a-b)\(^2]\):(a-b)\(^2\)
=5(a-b)+2
b)5(x-2y)\(^3\):(5x-10y)
=5(x-2y)\(^3\):5(x-2y)
=(x-2y)\(^2\)
c)(x\(^3\)+8y\(^3\)):(x+2y)
=\([\)x\(^3\)+(2y)\(^3]\):(x+2y)
=(x+2y)(x\(^2\)-2xy+4y\(^2\)):(x+2y)
=x\(^2\)-2xy+4y\(^2\)
Giải hệ \(\left\{{}\begin{matrix}\left(x+4y\right)\left(x^2+16y^2\right)=32xy\left(x+4y-3\sqrt{xy}\right)\\\sqrt{3x-1}+6x=\sqrt{8y+3}+8\left(2y+1\right)\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{3x-1}=a\ge0\\\sqrt{8y+3}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+2\left(a^2+1\right)=b+2\left(b^2-3\right)+8\)
\(\Leftrightarrow2a^2-2b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow3x-1=8y+3\) (1)
Lại xét pt đầu:
\(\left(x+4y\right)\left(x^2+16y^2+8xy\right)=8xy\left(x+4y\right)+32xy\left(x+4y-3\sqrt{xy}\right)\)
\(\Leftrightarrow\left(x+4y\right)^3-40xy\left(x+4y\right)+96xy\sqrt{xy}=0\)
Đặt \(\left\{{}\begin{matrix}x+4y=m\\\sqrt{xy}=n\ge0\end{matrix}\right.\)
\(\Rightarrow m^3-40mn^2+96n^3=0\)
\(\Leftrightarrow\left(m-4n\right)\left(m^2+4mn-24n^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4y=4\sqrt{xy}\\\left(x+4y\right)^2+4\left(x+4y\right)\sqrt{xy}-24xy=0\end{matrix}\right.\) (2)
Rút x hoặc y từ (1) và thế vào (2) để giải
Dài quá làm biếng.