Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2020 lúc 21:07

a/

\(\Leftrightarrow2cos2x.cosx+\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right).cos2x=0\)

\(\Leftrightarrow2cos2x.cosx+cos^22x=0\)

\(\Leftrightarrow cos2x\left(2cosx+cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\left(1\right)\\2cosx+cos2x=0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

\(\left(2\right)\Leftrightarrow2cosx+2cos^2x-1=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}-1}{2}\\cosx=\frac{-\sqrt{3}-1}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm arccos\left(\frac{\sqrt{3}-1}{2}\right)+k2\pi\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 21:12

b/

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cosx+1-cos^2x+2cos^2x-1=\frac{1}{2}\)

\(\Leftrightarrow cos^2x+\frac{1}{2}cosx=0\)

\(\Leftrightarrow cosx\left(cosx+\frac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

c/ ĐKXĐ: ...

\(\Leftrightarrow\left(\frac{sinx}{cosx}+\frac{cosx}{sinx}\right)^2+\frac{3}{sin2x}-7=0\)

\(\Leftrightarrow\left(\frac{sin^2x+cos^2x}{sinx.cosx}\right)^2+\frac{3}{sin2x}-7=0\)

\(\Leftrightarrow\left(\frac{2}{sin2x}\right)^2+\frac{3}{sin2x}-7=0\)

Đặt \(\frac{1}{sin2x}=a\Rightarrow4a^2+3a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{7}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{4}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=arcsin\left(-\frac{4}{7}\right)+k2\pi\\2x=\pi-arcsin\left(-\frac{4}{7}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2020 lúc 22:03

a/

\(\Leftrightarrow4sin^3x+6\sqrt{2}sinx.cosx-8sinx=0\)

\(\Leftrightarrow2sinx\left(2sin^2x+3\sqrt{2}cosx-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\2sin^2x+3\sqrt{2}cosx-4=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\left(1-cos^2x\right)+3\sqrt{2}cosx-4=0\)

\(\Leftrightarrow-2cos^2x+3\sqrt{2}cosx-2=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\sqrt{2}>1\left(l\right)\\cosx=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 22:11

b/

\(\Leftrightarrow4cos^3x+8sinx.cosx-7cosx=0\)

\(\Leftrightarrow cosx\left(4cos^2x+8sinx-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\4cos^2x+8sinx-7=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(1-sin^2x\right)+8sinx-7=0\)

\(\Leftrightarrow-4sin^2x+8sinx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
25 tháng 7 2020 lúc 22:14

c/

ĐKXĐ; ...

\(\Leftrightarrow\frac{sinx}{cosx}+\frac{cosx}{sinx}-5+\frac{3}{sin^22x}=0\)

\(\Leftrightarrow\frac{sin^2x+cos^2x}{sinx.cosx}-5+\frac{3}{sin^22x}=0\)

\(\Leftrightarrow\frac{3}{sin^22x}+\frac{2}{sin2x}-5=0\)

Đặt \(\frac{1}{sin2x}=t\Rightarrow3t^2+2t-5=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{5}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{3}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\end{matrix}\right.\)

Bình Trần Thị
Xem chi tiết
Nguyễn Hà Chi
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 11 2019 lúc 18:29

\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)

\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)

\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)

\(=-cot^2x.sin^2x+cos^2x+2\)

\(=-cos^2x+cos^2x+2=2\)

\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)

\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)

\(=\left(sin^2x+cos^2x\right)^4+1\)

\(=1^4+1=2\)

Khách vãng lai đã xóa
quangduy
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2019 lúc 5:19

Giả sử các biểu thức đều có nghĩa

\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)

\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)

\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)

\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)

b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)

\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)

c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)

\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 12 2017 lúc 8:24

Đối với những phương trình lượng giác chứa tanx, cotx, sin2x hoặc cos2x, ta có thể đưa về phương trình chứa cosx, sinx, sin2x, hoặc cos2x ngoài ra cũng có thể đặt ẩn phụ t = tanx để đưa về một phương trình theo t.

Cách 1: Điều kiện của phương trình:

sin2x ≠ 0 ⇔ cos2x ≠ 1 hoặc cos2x ≠ -1 (1)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Cách 2. Đặt t = tanx

Điều kiện t ≠ 0

Phương trình đã cho có dạng

Giải sách bài tập Toán 11 | Giải sbt Toán 11

thai thai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2017 lúc 8:38

Điều kiện của phương trình: sinx ≠ 0, cos ≠ 0, tan ≠ -1.

Biến đổi tương đương đã cho, ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Phương trình (2) vô nghiệm vì |sin2x + cos2x| ≥ √2.

Phương trình (1) có nghiệm 2x = π/2+kπ,k ∈ Z

⇒ x = π/4+ k π/2,k ∈ Z.

 

Giá trị x = π/4+ k π/2, k = 2n + 1,

với n ∈ Z bị loại do điều kiện tanx ≠ -1.

1512 reborn
Xem chi tiết
Kuro Kazuya
20 tháng 4 2017 lúc 12:59

a) \(B=\dfrac{sin^4x-cos^4x+cos^2x}{2\left(1-cosx\right)\left(1+cosx\right)}\)

\(B=\dfrac{\left(sin^2x\right)^2-\left(cos^2x\right)^2+cos^2x}{2\left(1-cos^2x\right)}\)

\(B=\dfrac{\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)+cos^2x}{2\left(sin^2x+cos^2x-cos^2x\right)}\)

\(B=\dfrac{sin^2x-cos^2x+cos^2x}{2sin^2x}=\dfrac{sin^2x}{2sin^2x}=\dfrac{1}{2}\)

b) \(\dfrac{1+sin2x-cos2x}{1+sin2x+cos2x}=tanx\)

\(VT=\dfrac{1+2sinx.cosx-\left(1-2sin^2x\right)}{1+2sinx.cosx+2cos^2x-1}\)

\(VT=\dfrac{1+2sinx.cosx-1+2sin^2x}{2sinx.cosx+2cos^2x}\)

\(VT=\dfrac{2sinx.cosx+2sin^2x}{2sinx.cosx+2cos^2x}\)

\(VT=\dfrac{2sinx\left(cosx+sinx\right)}{2cosx\left(sinx+cosx\right)}=\dfrac{sinx}{cosx}=tanx=VP\) ( đpcm )

p/s : sửa \(cos1x\rightarrow cos2x\)