Đưa thừa số vào trong dấu căn: ( \(x-5\) )\(\sqrt{\frac{3}{25-x^2}}\)
Đưa một thừa số vào trong dấu căn: \(x\sqrt{\dfrac{2}{x}}\left(x>0\right)\); \(x\sqrt{\dfrac{2}{5}}\); \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\); \(x\sqrt{\dfrac{7}{x^2}}\)
\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2\cdot\dfrac{2}{x}}=\sqrt{2x}\)
\(x\sqrt{\dfrac{2}{5}}=\sqrt{\dfrac{2}{5}\cdot x^2}=\sqrt{\dfrac{2x^2}{5}}\)
\(\left(x-5\right)\cdot\sqrt{\dfrac{x}{25-x^2}}=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{-\left(x-5\right)\left(x+5\right)}}=\sqrt{-\dfrac{x\left(x-5\right)}{x+5}}\)
\(x\sqrt{\dfrac{7}{x^2}}=\sqrt{x^2\cdot\dfrac{7}{x^2}}=\sqrt{7}\)
1. Rút gọn biểu thức
\(\sqrt{\dfrac{4}{3}}+\sqrt{12}-\dfrac{4}{3}\sqrt{\dfrac{3}{4}}\)
2. Đưa thừa số vào trong dấu căn :
a. \(\left(2-a\right)\sqrt{\dfrac{2a}{a-2}}\) với a lớn hơn 2
b. với 0 bé hơn x, x bé hơn 5. \(\left(x-5\right)\sqrt{\dfrac{x}{25-x^2}}\)
c. Với 0 bé hơn a, a bé hơn b \(\left(a-b\right)\)\(\sqrt{\dfrac{3a}{b^2-a^2}}\)
Đưa thừa số vào trong dấu căn
\(\frac{2+2\sqrt{5}}{3-\sqrt{5}}\cdot\sqrt{\frac{24-8\sqrt{5}}{3+3\sqrt{5}}}\)
Đưa thừa số vào trong dấu căn
a)\(-\frac{a}{b}\sqrt{\frac{b}{a}}\) (a>0, b>0)
b)\(\frac{1}{2x-1}\sqrt{5-20x-20x^2}\) (x>1/2)
c) (x - 5) \(\sqrt{\frac{3}{25-x^2}}\)
d) \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
Đưa thừa số vào trong dấu căn: \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
\(=\sqrt{\left(\frac{x}{x-y}\right)^2\cdot\frac{x-y}{x}}\)
\(=\sqrt{\frac{x^2}{\left(x-y\right)^2}\cdot\frac{x-y}{x}}\)
\(=\sqrt{\frac{x}{x-y}}\)
Đưa thừa số vào trong dấu căn:
a) \(-\frac{a}{b}\sqrt{\frac{b}{a}}\left(a>0,b>0\right)\)
b)\(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x> \(\frac{1}{2}\)
c) \(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}\)
d) \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
a)\(=-\sqrt{\left(\frac{a}{b}\right)^2\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a^2}{b^2}\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a}{b}}\)
b) \(=\sqrt{\left(\frac{1}{2x-1}\right)^2\cdot5\left(4x^2-4x+1\right)}\)
\(=\sqrt{\frac{5}{\left(2x-1\right)^2}\cdot\left(2x-1\right)^2}\)
\(=\sqrt{5}\)
c)\(=\sqrt{\left(x-5\right)^2\cdot\frac{-3}{\left(x-5\right)\left(x+5\right)}}\)
\(=\sqrt{\frac{-3\left(x-5\right)}{x+5}}\)
\(=\sqrt{\frac{15-3x}{x+5}}\)
Đưa thừa số vào trong dấu căn: \(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x > \(\frac{1}{2}\))
\(\frac{1}{2x-1}\sqrt{5-20x+20x^2}=\frac{1}{2x-1}\sqrt{5.\left(1-4x+4x^2\right)}\)
\(=\frac{1}{2x-1}\sqrt{5.\left(1-2x\right)^2}=\sqrt{\frac{1}{\left(2x-1\right)^2}}\sqrt{5.\left(2x-1\right)^2}\)(x>1/2)
\(=\sqrt{\frac{1}{\left(2x-1\right)^2}.5.\left(2x-1\right)^2}=\sqrt{5}\)
Đưa thừa số vào trong dấu căn:
\(3\sqrt{5};-5\sqrt{2};-\dfrac{2}{3}\sqrt{xy}\) với \(xy\ge0;x\sqrt{\dfrac{2}{x}}\) với x > 0.
3\(\sqrt{5}\)= \(\sqrt{3^2.5}\)=\(\sqrt{45}\)
-5\(\sqrt{2}\)= \(-\sqrt{5^2.2}\)= -\(\sqrt{50}\)
\(\dfrac{-2}{3}\sqrt{xy}\) = \(-\sqrt{\left(\dfrac{2}{3}\right)^2xy}\) = -\(\sqrt{\dfrac{4}{9}xy}\)
x\(\sqrt{\dfrac{2}{x}}\)= \(\sqrt{\dfrac{2x^2}{x}}=\sqrt{2x}\)
Đưa thừa số vào trong dấu căn:\(\dfrac{2+2\sqrt{5}}{3-\sqrt{5}}\).\(\sqrt{\dfrac{24-8\sqrt{5}}{3+3\sqrt{5}}}\)