\(=\sqrt{\left(\frac{x}{x-y}\right)^2\cdot\frac{x-y}{x}}\)
\(=\sqrt{\frac{x^2}{\left(x-y\right)^2}\cdot\frac{x-y}{x}}\)
\(=\sqrt{\frac{x}{x-y}}\)
\(=\sqrt{\left(\frac{x}{x-y}\right)^2\cdot\frac{x-y}{x}}\)
\(=\sqrt{\frac{x^2}{\left(x-y\right)^2}\cdot\frac{x-y}{x}}\)
\(=\sqrt{\frac{x}{x-y}}\)
Đưa thừa số vào trong dấu căn:
a) \(-\frac{a}{b}\sqrt{\frac{b}{a}}\left(a>0,b>0\right)\)
b)\(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x> \(\frac{1}{2}\)
c) \(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}\)
d) \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
Đưa thừa số vào trong dấu căn: ( \(x-5\) )\(\sqrt{\frac{3}{25-x^2}}\)
Đưa thừa số vào trong dấu căn: \(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x > \(\frac{1}{2}\))
tìm số x,y,x TM\(\frac{\sqrt{x-2002}-1}{x-2002}+\frac{\sqrt{y-2003}-1}{y-2003}+\frac{\sqrt{z-2004}-1}{z-2004}=\frac{3}{4}\)
cho 3 số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
cmr : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
\(\left(\sqrt{x}+\frac{y-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\left(\right)\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\left(\right)\)
rút gọn tính khi x=3, y=\(4+2\sqrt{3}\)
CẦN GẤP
Tính giá trị của biểu thức sau:
\(B=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\frac{2x^2}{\sqrt{x}}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}+\frac{3\sqrt{xy}-3y}{x-y}\) tại x=1997; y=30303
Cho 3 số dương x,y,z thỏa mãn điều kiện xy+yz+xz=2010.CMR: giá trị của biểu thứ sau k phụ tuộc vào biến x;y;z
P=\(x\sqrt{\frac{\left(2010+y^2\right)\left(2010+z^2\right)}{2010+x^2}}\)+ \(y\sqrt{\frac{\left(2010+z^2\right)\left(2010+x^2\right)}{2010+y^2}}\)+\(z\sqrt{\frac{\left(2010+x^2\right)\left(2010+y^2\right)}{2010+z^2}}\)
*cho BT :
A=((\(\frac{1}{\sqrt{x}}\)+\(\frac{1}{\sqrt{y}}\))x\(\frac{2}{\sqrt{x}+\sqrt{y}}\)+ \(\frac{1}{x}\)+\(\frac{1}{y}\)):\(\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)