\(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}=\sqrt{\left(x-5\right)^2}\sqrt{\frac{3}{\left(5-x\right)\left(x+5\right)}}=\sqrt{\left(5-x\right)^2.\frac{3}{\left(5-x\right)\left(x+5\right)}}=\sqrt{\frac{3\left(5-x\right)}{x+5}}\)
\(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}=\sqrt{\left(x-5\right)^2}\sqrt{\frac{3}{\left(5-x\right)\left(x+5\right)}}=\sqrt{\left(5-x\right)^2.\frac{3}{\left(5-x\right)\left(x+5\right)}}=\sqrt{\frac{3\left(5-x\right)}{x+5}}\)
Đưa thừa số vào trong dấu căn: \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
Đưa thừa số vào trong dấu căn:
a) \(-\frac{a}{b}\sqrt{\frac{b}{a}}\left(a>0,b>0\right)\)
b)\(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x> \(\frac{1}{2}\)
c) \(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}\)
d) \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
Đưa thừa số vào trong dấu căn: \(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x > \(\frac{1}{2}\))
1/ Thực hiện phép tính:
\(\left(\sqrt[3]{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}\)
2/ Cho biểu thức: \(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\)
(Tử số có 2010 dấu căn, mẫu số có 2009 dấu căn)
Chứng minh A < \(\frac{1}{4}\)
Đưa thừa số vào trong dấu căn:
a) −\(\frac{a}{b}\sqrt{\frac{b}{a}}\)(a>0,b>0)
đưa thừa số ra ngoài dấu căn
a)\(0,1\sqrt{20000}\)
b)\(-0,05\sqrt{28800}\)
c)\(\sqrt{7.63a^2}\)
d)\(\sqrt{72a^2b^4}v\text{ới}a< 0\)
Cho biểu thức
A= \(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a, Rút gọn A
b, Tìm x để A<1
Tìm x, biết: \(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+.....}}}}\) trong đó các dấu chấm có nghĩa là lặp đi lặp lại cách viết căn thức có chứa chữ số 5 và 13 một cách vô hạn lần
chứng minh giá trị biểu thức P=\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\) không phụ thuộc vào biến số x