\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)
\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)
\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)
\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)
Cho biểu thức:
\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+....+\sqrt{3}}}}}\)
Tử có 2017 dấu căn, mẫu có 2016 dấu căn. Chứng minh \(A< \frac{1}{4}\)
Thực hiện phép tính: \(\frac{\left(3\sqrt{8}-6\sqrt{\frac{1}{2}}-2\sqrt{18}+3\sqrt{50}\right)}{\frac{1}{2}\sqrt{24,5}-\sqrt{4,5}+\frac{3}{4}\sqrt{12,5}}\)
Thực hiện các phép tính sau
a, \(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
b, \(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
c, \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
Bài 1 : Thực hiện phép tính :
a ) \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\)
b ) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
c ) \(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}\)
d ) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
e ) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
f ) \(\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
g ) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}\)
h ) \(\left(\sqrt{56}-2\sqrt{6}-\sqrt{14}\right)\sqrt{14}+\sqrt{84}\)
k ) \(\left(\frac{1}{1-\sqrt{3}}-\frac{1}{1+\sqrt{3}}\right).\left(\sqrt{3}-1\right)\)
l ) \(\sqrt{21+8\sqrt{5}}+\sqrt{21-8\sqrt{5}}\)
m ) \(\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
n ) \(\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
Làm không nổi thì câu nào biết thì làm làm từ từ dần dần giúp nha các bạn
Thực hiện phép tính
a, \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
b. \(\frac{\sqrt{3-\sqrt{5}.\left(3+\sqrt{5}\right)}}{\sqrt{10}+\sqrt{2}}\)
c, \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
d, \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Thực hiện phép tính: \(\left(\sqrt{4,5}-\frac{1}{2}\sqrt{72}+5\sqrt{\frac{1}{2}}\right)\left(42\sqrt{\frac{25}{6}}-10\sqrt{\frac{3}{2}}-12\sqrt{\frac{98}{3}}\right)\)
Khử mẫu của biểu thức lấy căn
\(\sqrt{\frac{1}{600}}\) ; \(\sqrt{\frac{11}{540}}\) ; \(\sqrt{\frac{3}{50}}\) ; \(\sqrt{\frac{5}{98}}\) ; \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}\)
ab\(\sqrt{\frac{a}{b}}\) ; \(\frac{a}{b}\)\(\sqrt{\frac{b}{a}}\) ; \(\sqrt{\frac{1}{b}+\frac{1}{b^2}}\) ; \(\sqrt{\frac{9a^3}{36b}}\) ; 3xy\(\sqrt{\frac{2}{xy}}\)
(Gỉa thiế các biểu thức có nghĩa
Rút gọn biểu thức :
\(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}.\sqrt{2+\sqrt{3}}\)
\(\left[\left(a-b\right)\sqrt{\frac{a+b}{a-b}}+a-b\right]\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)với a>b>0
Chứng minh rằng :
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
Thực hiện phép tính sau
a, \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
b, \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
c, \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
d, \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)