tìm giá trị lớn nhất của \(\left|x^2+2015\right|-3\)
Tìm giá trị của x để biểu thức \(A=\frac{\left|2x-3\right|+2^{2015}}{\left|3-2x\right|+3^{2015}}\) đạt giá trị lớn nhất.
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
3. Tìm x, y để
a) \(D=-\left(3x+\frac{1}{5}\right)^4+\left(-\left(\frac{1}{2}y+3\right)^2\right)^3+1963\)đạt giá trị lớn nhất
b) \(E=\left(x-2\right)^2+\left(y+8\right)^2-2015\)đạt giá trị nhỏ nhất
Tìm giá trị lớn nhất của biểu thức: \(A=\left|x-3\right|.\left(2-\left|x-3\right|\right)\)
Tìm các giá trị x, y thuộc Z nguyên dương và \(1007x+y=2015\) sao cho biểu thức \(Q=17-\left|x+y\right|-\dfrac{9}{\left|x+y\right|}\) đạt giá trị lớn nhất.
Tìm giá trị lớn nhất của biểu thức \(A=\dfrac{3+2\left|X+2\right|}{1+\left|X+2\right|}\)
\(A=\dfrac{3+2\left|x+2\right|}{1+\left|x+2\right|}\)
\(=\dfrac{2+2\left|x+2\right|+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)+1}{1+\left|x+2\right|}\)
\(=\dfrac{2\left(1+\left|x+2\right|\right)}{1+\left|x+2\right|}+\dfrac{1}{1+\left|x+2\right|}\)
\(=2+\dfrac{1}{1+\left|x+2\right|}\)
Ta có \(\left|x+2\right|\ge0\)
\(\Leftrightarrow1+\left|x+2\right|\ge1\)
\(\Leftrightarrow\dfrac{1+\left|x+2\right|}{1+\left|x+2\right|}\ge\dfrac{1}{1+\left|x+2\right|}\)
\(\Leftrightarrow\dfrac{1}{1+\left|x+2\right|}\le1\)
\(\Leftrightarrow2+\dfrac{1}{1+\left|x+2\right|}\le1+2=3\)
\(\Rightarrow A\le3\)
Dấu \("="\) xảy ra khi \(x+2=0\) \(\Leftrightarrow x=-2\)
Vậy giá trị lớn nhất của biểu thức \(A\) là \(3\)
tìm giá trị nhỏ nhất của A và giá trị lớn nhất của B:
A=\(|x-\dfrac{1}{2}|-3\)
B=\(\dfrac{2}{3}-\left|x-4\right|\)
a)Vì |x-1/2|≥0
|x-1/2|-3≥0-3
A=|x-1/2|-3≥-3
=>A≥-3
Dấu ''='' xảy ra khi
x-1/2=0
x=0+1/2
x=1/2
Vậy GTNN của biểu thức đã cho là -3 khi x=1/2
b)
Vì |x-4|≥0
-|x-4|≤0
=>2/3-|x-4|≤2/3-0
2/3-|x-4|≤2/3
=>B=2/3-|x-4|≤2/3
B≤2/3
Dấu ''='' xảy ra khi
x-4=0
x=0+4
x=4
Vậy GTLN của biểu thức là 2/3 khi x=4
tìm giá trị lớn nhất của biểu thức :
\(\frac{2016}{\left|x-2015\right|+2}\)
giúp mình nha mọi người
GTLN của biểu thức khi mẫu số nhỏ nhất mà mẫu số
/x - 1015/ + 2 nhỏ nhất là 2 vì / x-2015/ > hoặc = 0
/x- 2015/ =0 khi x= 2015 thi biểu thức trên có GTLN = 2016/2 = 1008
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)