tim so nghiem nguyen cua bat phuong trinh \(\sqrt{5-2x}\le4\)
tim nghiem nguyen cua phuong trinh 2x – 5y +xy = 6
tim nghiem nguyen cua phuong trinh: \(\left(x^2+1\right)\sqrt{1-x}-\left(2x+x^3\right)\sqrt{x+1}=3x^4\sqrt{2x}\)
nghiem nguyen nho nhat cua bat phuong trinh \(\sqrt{x}>2\) la x =?
5 vì căn bậc hai của 4 = 2 mà căn bậc hai cua 5 =2,236 (làm tròn)
tim nghiem nguyen cua phuong trinh : 3^x + 4^x = 5^x
Cái này bộ ba pytago nên bạn chỉ cần cm x=2 là đc
tim tat ca cac gia tri thuc cua tham so m de bat phuong trinh mx^2 + 2mx -3 < 0 nghiem dung voi moi so thuc x
Trường hợp 1: m=0
=>-3<0(luôn đúng)
=>Nhận
Trường hợp 2: m<>0
\(\text{Δ}=\left(2m\right)^2-4\cdot m\cdot\left(-3\right)=4m^2+12m=4m\left(m+3\right)\)
Để phương trình có nghiệm đúng thì \(\left\{{}\begin{matrix}4m\left(m+3\right)< 0\\m< 0\end{matrix}\right.\Leftrightarrow-3< m< 0\)
Vậy: -3<m<=0
cho phuong trinh (2x+5)(x-2)=11 (1)
(x+1)(2x-5)=-3 (2)
trong cac so 1;-1;2;-2;5/2;-5/2 thi so nao la nghiem cua phuong trinh (1), so nao la nghiem cua phuong trinh (2)
Ta có:
(1) ⇔ 2x2 + x - 10 = 11 ⇔ 2x2 + x - 21 = 0 ⇔ 2x2 - 7x + 6x - 21 = 0
⇔ x(2x - 7) + 3(2x - 7) = 0 ⇔ (2x - 7)(x + 3) = 0
\(\text{⇔}\left[{}\begin{matrix}2x-7=0\\x+3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=\frac{7}{2}\\x=-3\end{matrix}\right.\)
Vậy trong các số 1; -1 ; 2 ; -2 ; \(\frac{5}{2};-\frac{5}{2}\) thì không có số nào là nghiệm của phương trình (1)
Tương tự, ta có:
(2) ⇔ 2x2 - 3x - 5 = -3 ⇔ 2x2 - 3x - 2 = 0 ⇔ 2x2 - 4x + x - 2 = 0
⇔ 2x(x - 2) + (x - 2) = 0 ⇔ (x - 2)(2x + 1) = 0
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\2x+1=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy trong các số trên thì 2 là nghiệm của phương trình.
Trong bài này còn cách là thay từng số vào phương trình, nhưng cách này hơi lâu.
Chúc bạn học tốt@@
biet rang phuong trinh (x-3a+1)(3x+2a-5)=0 (a la tham so nguyen duong ) co mot nghiem x=1 . nghiem con lai cua phuong trinh la x=....
Thay x=1 vào phương trình ta có:
\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)
\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)
TH1: \(a=\dfrac{2}{3}\)
\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)
TH2:a=1
\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Tim nghiem nguyen cua phuong trinh: 2xy + x + y=83
2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)
kẻ bảng ra
tim nghiem nguyen cua phuong trinh
\(2x^2+4x=19-3y^2\)
\( 2x^2+4x=19-3y^2\)
<=>\(2(x^2+2x)=19-3y^2\)
\(<=> x^2+2x=19-3y^2/2\)
Vì x^2+2x thuộc Z
\(=>19-3y^2/2\) thuộc Z
Ta có:
\(19-3y^2/2=(21-3y^2-2)/2=3(7-y^2)/2 -1\)
Vì (3,2)=1
\(=>7-y^2 \) chia hết cho 2
Đặt \(7-y^2=2t\)(t thuộc Z)
\(=>y^2=7-2t\) (1)
Lại có:
\(x^2+2x=19-3y^2/2=3(7-y^2)/2 -1\)
\(<=>(x+1)^2=3(7-y^2)/2 >=0\)
\(=>y^2≤ 7\)
\(=>7-2t≤7\)
\(=>t>=0\)(2)
Từ (1),ta có:
\(7-2t>=0\)
\(<=>t≤7/2\)(3)
Từ (2) và (3)
\(=>t=0,1,2,3\)
Thay vào (1) sẽ tìm được y và từ đó tìm đc x thôi