Cho pt :\(x^2-2mx+m-2=0\). câu trả lời nào sau đây là sai
Cho AB và AC là 2 tiếp tuyến của (O) với B, C là các tiếp điểm. Câu trả lời nào sau đây là sai?
A. AB = BC
B. AB = AC
C. AO là trục đối xứng của dây BC
D. ∠BAO = ∠CAO
Cho AB và AC là 2 tiếp tuyến của (O) với B, C là các tiếp điểm. Câu trả lời nào sau đây là sai?
A. AB = AC
B. AB = BC
C. AO là trục đối xứng của dây BC
D. ∠BAO = ∠CAO
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
giúp mình trả lời câu hỏi này với :)
cho pt (m-3)x2 -2mx+m+2=0 (1)
a) tìm m để pt có nghiệm duy nhất
b) giả sử x1, x2 là hai nghiệm của phương trình (1) tìm giá trị nhỏ nhất của biểu thức x12 + x22
c) viết hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc vào m
Hãy khoanh tròn vào chữ cái đứng trước câu trả lời đúng :
1) Với , khẳng định nào dưới đây là SAI :
A. |x| = x (x > 0) B. |x| = - x (x < 0)
C. |x| = 0 nếu x = 0 D. |x| = x (x < 0)
2) Với x là số hữu tỉ khác 0, tích x6.x2 bằng :
A. x12 B. x9 : x C. (x6)2 D.x10 – x2
3) Với x≠0 , (x2)4 bằng :
A. x6 B. x8 : x0 C. x6 + x2 D. x10 - x2
anh chị xinh gái đẹp ơi hãy giúp em giải bài toán này
Cho pt : \(x^2-2mx+2m-3=0\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) là các số nguyên.
\(x^2-2mx+2m-3=0\left(1\right)\)
Để phương trình (1) có nghiệm thì:
\(\Delta\ge0\Rightarrow\left(-2m\right)^2-4\left(2m-3\right)\ge0\)
\(\Leftrightarrow4m^2-8m+12\ge0\)
\(\Leftrightarrow\left(2m-2\right)^2+8\ge0\) (luôn đúng)
Vậy \(\forall m\) thì phương trình (1) có nghiệm.
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-x_1x_2=3\)
\(\Rightarrow\left(x_1x_2-x_1-x_2+1\right)+2=0\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-2\right)=-2\)
Vì x1, x2 là các số nguyên nên x1-1 , x2-1 là các ước số của -2. Lập bảng:
x1-1 | 1 | -1 | 2 | -2 |
x2-1 | -2 | 2 | -1 | 1 |
x1 | 2 | 0 | 3 | -1 |
x2 | -1 | 3 | 0 | 2 |
Với \(\left(x_1;x_2\right)=\left(3;0\right),\left(0;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}2m=0+3=3\\2m-3=0.3=0\end{matrix}\right.\Rightarrow m=\dfrac{3}{2}\)
Với \(\left(x_1;x_2\right)=\left(2;-1\right),\left(-1;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m=2-1=1\\2m-3=2.\left(-1\right)=-2\end{matrix}\right.\Rightarrow m=\dfrac{1}{2}\)
Vậy m=1/2 hay m=3/2 thì pt trên có 2 nghiệm là các số nguyên.
Từ điểm A bên ngoài đường tròn, vẽ 2 tiếp tuyến AB, AC với (O). B, C là các tiếp điểm. Câu trả lời nào sau đây là sai?
A. ∠BAO = ∠OAC
B. AB = BC
C. AO là đường trung trực của BC
D. ΔABC cân tại A
Cho pt: \(x^2-2mx+m^2-m+1=0\) (\(m\) là tham số)
\(a)\)Giải pt với \(m=1\)
\(b)\)Tìm \(m\) để phương trình có \(2\) nghiệm phân biệt \(x\)\(1\) ; \(x\)\(2\)
`a)` Thay `m = 1` vào ptr:
`x^2 - 2 . 1 x + 1^2 - 1 + 1 = 0`
`<=>x^2 - 2x + 1 = 0`
`<=>(x - 1)^2=0`
`<=>x-1=0<=>x=1`
___________________________________________
`b)` Ptr có `2` nghiệm pb
`<=>\Delta' > 0`
`<=>b'^2-ac > 0`
`<=>(-m)^2-(m^2-m+1) > 0`
`<=>m^2-m^2+m-1 > 0`
`<=>m > 1`
Cho PT: \(x^2-2mx+3m-4=0\)
a, Tìm m để PT đã cho có nghiệm là 2
b, Tìm m để PT đã cho không có nghiệm là 3
c, Tìm m để PT đã cho có 2 nghiệm trái dấu
d, Tìm m để PT đã cho có 2 nghiệm dương
a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0
=>-m=0
=>m=0
c: Để PT có hai nghiệm tráo dấu thì 3m-4<0
=>m<4/3
d: Δ=(-2m)^2-4(3m-4)
=4m^2-12m+16
=(2m-3)^2+7>=7
=>Phương trình luôn có hai nghiệm pb
Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0
=>m>4/3