\(x^2-2mx+2m-3=0\left(1\right)\)
Để phương trình (1) có nghiệm thì:
\(\Delta\ge0\Rightarrow\left(-2m\right)^2-4\left(2m-3\right)\ge0\)
\(\Leftrightarrow4m^2-8m+12\ge0\)
\(\Leftrightarrow\left(2m-2\right)^2+8\ge0\) (luôn đúng)
Vậy \(\forall m\) thì phương trình (1) có nghiệm.
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-x_1x_2=3\)
\(\Rightarrow\left(x_1x_2-x_1-x_2+1\right)+2=0\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-2\right)=-2\)
Vì x1, x2 là các số nguyên nên x1-1 , x2-1 là các ước số của -2. Lập bảng:
x1-1 | 1 | -1 | 2 | -2 |
x2-1 | -2 | 2 | -1 | 1 |
x1 | 2 | 0 | 3 | -1 |
x2 | -1 | 3 | 0 | 2 |
Với \(\left(x_1;x_2\right)=\left(3;0\right),\left(0;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}2m=0+3=3\\2m-3=0.3=0\end{matrix}\right.\Rightarrow m=\dfrac{3}{2}\)
Với \(\left(x_1;x_2\right)=\left(2;-1\right),\left(-1;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m=2-1=1\\2m-3=2.\left(-1\right)=-2\end{matrix}\right.\Rightarrow m=\dfrac{1}{2}\)
Vậy m=1/2 hay m=3/2 thì pt trên có 2 nghiệm là các số nguyên.