Tìm GTNN của P = / x2 - x + 1/ + / x2 - x - 2 /
(// là dấu giá trị tuyệt đối nhak)
Tìm GTNN của P = / x2 - x + 1/ + / x2 - x - 2 /
(// là dấu giá trị tuyệt đối nhak)
GIUPS MINK VS
Ta có P = |2x - x + 1| + |2x - x - 2|
=> P = |x + 1| + |x - 2| \(\ge\) |x + 1 + x - 2|
=> P \(\ge\) |2x - 1| (1)
Dấu = xảy ra <=>(x + 1) . (x - 2) = 0
<=> \(\left[\begin{array}{nghiempt}x+1=0\\x-2=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-1\\x=2\end{array}\right.\)
Thay x = 2 vào (1) => P = |2.2-1|
=> P = 3
Vậy MinP = 3 <=> x\(\in\) {-1; 2}
Cho pt : x2-(2m+1)x+2m-4=0 . Tìm các giá trị của m để pt có 2 nghiệm trái dấu, nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
Cho phương trình \(x^2-2x+2-m=0\left(1\right)\) (với m là tham số)
a) Tìm các giá trị của m để phương trình (1) có 2 ngiệm trái dấu
b) Tìm giá trị của m để phương trình (1) có 2 nghiệm phân biệt x1,x2 sao cho /x1 - x2/ = 1 (/ là trị tuyệt đối)
cho phương trình x2 - 2<m-1>x +m-5 bằng 0
tìm m để x1 x2 là 2 nghiệm của phương trình . Tìm m để thỏa mãn biểu thức p bằngtrị tuyệt đối của x1-x2 đạt giá trị nhỏ nhất
\(x^2-2\left(m-1\right)x+m-5=0\)
Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
Đặt \(A=\left|x_1-x_2\right|\)
\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)
\(=\left(2m-3\right)^2+15\ge15\)
\(\Rightarrow A\ge\sqrt{15}\)
\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)
Giá trị lớn nhất cua \(A=x+\frac{1}{2}-!x-\frac{2}{3}!\)(hai dấu '!' nghĩa là giá trị tuyệt đối nhak .Thanks mọi người nhìu !)
GTLN của A là 7/6, tick cho mk nhé
cho phương trình x2-(m+1)x+m+4=0 với m là tham số
a) tìm mm để phương trình có 2 nghiệm trái dấu sao cho nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương
Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)
Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)
\(\Leftrightarrow m+1>0\Rightarrow m>-1\)
\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)
Vậy không tồn tại m thỏa mãn yêu cầu đề bài
tìm tập hợp x thõa mãn A= ((12x-15)/(x2 -7x+12)) -((x+5)/(x-4)) + ((2x-3)/(3-x)) có giá trị nguyên
tìm x>0 thõa mãn /x-9/ + (-/2x/) = 0 ( dấu / / là gt tuyệt đối)
giá trị tuyệt đối x^2-x-1) + giá trị tuyệt đối (x^2-x-2) tìm gtnn
cho PT x2−2(m−1)x−m=0x2−2(m−1)x−m=0
a) tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào m
b) tìm m để Pt có đúng 1 nghiệm âm
c) tìm m để PT có 2 nghiệm = nhau về giá trị tuyệt đối và trái dấu nhau
d) tìm m để |x1−x2|nhỏnhất