Ta có P = |2x - x + 1| + |2x - x - 2|
=> P = |x + 1| + |x - 2| \(\ge\) |x + 1 + x - 2|
=> P \(\ge\) |2x - 1| (1)
Dấu = xảy ra <=>(x + 1) . (x - 2) = 0
<=> \(\left[\begin{array}{nghiempt}x+1=0\\x-2=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=-1\\x=2\end{array}\right.\)
Thay x = 2 vào (1) => P = |2.2-1|
=> P = 3
Vậy MinP = 3 <=> x\(\in\) {-1; 2}