Giải phương trình
\(C_n^4\)+\(C_n^5\)= 3\(C_{n+1}^6\)
Rút gọn biểu thức tổ hợp sau:
A= \(C_n^0\)+ 5\(C_n^1\)+ 10\(C_n^3\)+ 10\(C_n^4\)+ 5\(C_n^5\)+ \(C_n^6\) - \(C_{n+5}^5\)
\(\left(C_n^0\right)^2+\left(C_n^1\right)^2+...+\left(C_n^n\right)^2=C_{2n}^n\)
Giả sử có 1 nhóm người gồm 2n người, trong đó có n nam và n nữ.
Chọn n người từ 2n người đó, ta thực hiện theo 2 cách:
- Cách 1: chọn bất kì, có \(C_{2n}^n\) cách (1)
- Cách 2: giả sử trong n người được chọn có k nữ và \(n-k\) nam
Chọn k nữ từ n nữ, có \(C_n^k\) cách
Chọn \(n-k\) nam từ n nam, có \(C_n^{n-k}\) cách
Số cách thỏa mãn: \(\sum\limits^n_{k=0}C_n^kC_n^{n-k}=\sum\limits^n_{k=0}C_n^kC_n^k=\sum\limits^n_{k=0}\left(C_n^k\right)^2\) (2)
(1); (2) \(\Rightarrow\sum\limits^n_{k=0}\left(C_n^k\right)^2=C_{2n}^n\)
Chứng minh rằng :
1) \(2C_n^k+5C_n^{k+1}+4C_n^{k+2}+C_n^{k+3}=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
2) \(C_n^k+3C_n^{k-1}+3C_n^{k-2}=C_{n+3}^k\)
3) \(k\left(k-1\right)C_n^k=n\left(n-1\right)C_{n-2}^{k-2}\)
1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)
\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)
\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)
\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)
\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm
Giải giúp mình bài toán này với: Tìm n sao cho: \(C_n^2 C_n^{n-2} + 2C_n^2 C_n^3 + C_n^3 C_n^{n-3} = 100\)
Chứng minh rằng
\(C_n^m=C_{n-1}^{m-1}+C_{n-2}^{m-2}+...+C_{m-1}^{m-1}\)
Chứng minh: \(\frac{n+1}{n+2}\left(\frac{1}{C_{n+1}^k}+\frac{1}{C_{n+1}^{k+1}}\right)=\frac{1}{C_n^k}\)
a) Một lớp có 50 học sinh. Tính số cách phân công 4 bạn quét sân trường và 5 bạn xén cây bằng hai phương pháp để rút ra đẳng thức :
\(C_{50}^9C_9^4=C_{50}^4.C_{46}^5\)
b) Chứng minh công thức Niutơn :
\(C_n^r.C_r^k=C_n^k.C_{n-k}^{r-k}\) \(\left(n\ge r\ge k\ge0\right)\)
c) Tìm chữ số ở hàng đơn vị của tổng :
\(S=0!+2!+4!+6!+....+100!\)
a) Chọn 4 trong 50 bạn để quét sân, sau đó chọn 5 trong 46 bạn còn lại để xén cây. Vậy có \(C^4_{50}.C^4_{46}\) cách phân công.
Từ đó ta có đẳng thức cần chứng minh
b) Lập luận tương tự
c) Ta có : \(0!=1;2!=2;4!=1.2.3.4=24\)
Các số hạng \(6!;8!;.....,100!\) đều có tận cùng là chữ số \(0\). Do đó chữ số ở hàng đơn vị của \(S\) là \(1+2+4=7\)
Rut gon bieu thuc: \(Q=C_n+2\frac{C^2_n}{C^1_n}+...+k\frac{C_n^k}{C_n^{k-1}}+...+n\frac{C_n^n}{C_n^{n-1}}\)
1) Chung minh cong thuc ghep noi tiep:
\(\dfrac{1}{C_{td}}=\dfrac{1}{C_1}+\dfrac{1}{C_2}+...+\dfrac{1}{C_n}\)