Chứng minh rằng \(C_n^0+C_n^1+...+C_n^n=2^n\) (không dùng nhị thức Newton)
Rut gon bieu thuc: \(Q=C_n+2\frac{C^2_n}{C^1_n}+...+k\frac{C_n^k}{C_n^{k-1}}+...+n\frac{C_n^n}{C_n^{n-1}}\)
Chứng minh rằng :
1) \(2C_n^k+5C_n^{k+1}+4C_n^{k+2}+C_n^{k+3}=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
2) \(C_n^k+3C_n^{k-1}+3C_n^{k-2}=C_{n+3}^k\)
3) \(k\left(k-1\right)C_n^k=n\left(n-1\right)C_{n-2}^{k-2}\)
Chứng minh : \(\Sigma\dfrac{C_n^k}{C_{n+k+2}^{k+1}}\)=\(\dfrac{1}{2}\) với mọi n \(\ge\)2
( tổng \(\Sigma\) k chạy từ 0 đến n)
Cho số tự nhiên n ≥ 4. Nếu \(C_n^4\) = K thì \(A^4_n\) bằng:
A. 24K
B. 4K
C. 16K
D. \(\frac{K}{24}\)
Cho k là một số tự nhiên. Chứng minh rằng:
\(C_5^0.C_{2011}^k+C_5^1.C_{2011}^{k-1}+...+C_5^5.C_{2011}^{k-5}=C_{2016}^k\)
Rút gọn:
\(A=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{1}{\left(m+1\right)\left(m-4\right)}.\dfrac{\left(m+1\right)!}{\left(m-5\right)!5!}-\dfrac{m\left(m-1\right)!}{12.\left(m-4\right)!3!}\right]\) với \(m\ge5\)
Câu 1 : Rút gọn
\(G=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{\left(m+1\right)!}{5!.\left(m-4\right)!.\left(m+1\right)}-\dfrac{m!}{12.3!.\left(m-4\right)!}\right]\)
Câu 2 : CMR
\(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}< 3\forall n\in N\)
Có thể lập bao nhiêu số tự nhiên có 6 chữ số từ 10 số:0; 1; 2;........;8; 9. Trong đó số 1 xuất hiện tối đa 5 lần, có số: 2; 3; 4 có mặt tối đa 2 lần.