Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hang pham
Xem chi tiết
Oh Nova
27 tháng 8 2018 lúc 22:24

Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)

=> \(2n+2\sqrt{n^2-a^2}< 4n\)

=>\(2\sqrt{n^2-a^2}< 2n\)

=>\(\sqrt{n^2-a^2}< n\)

=>n2 - a< n(bình phương cả 2 vế)

Vì |a|>0

=>a2 > 0

=> n2-a< n

Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)

câu b làm tương tự nhé:

Phùng Gia Bảo
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Thắng Nguyễn
6 tháng 7 2017 lúc 18:40

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)

\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)

cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??

かとり ちりど
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2018 lúc 7:58

a) Ta có: x5 – 1 = (x – 1)(x4 + x3 + x2 + x + 1)

Lại có: x – 1 > 0 ⇒ x > 1 ⇒ x5 > x4 > x3 > x2 > x > 1

⇒ 1 + 1 + 1 + 1 + 1 < x4 + x3 + x2 + x + 1 < x4 + x4 + x4 + x4 + x4

hay 5 < x4 + x3 + x2 + x + 1 < 5x4

⇒ 5.(x – 1) < (x – 1)(x4 + x3 + x2 + x + 1) < 5x4.(x – 1)

hay 5.(x – 1) < x5 – 1 < 5x4.(x – 1) (đpcm)

b) x5 + y5 – x4y – xy4 = (x5 - x4y) - (xy4 - y5)

= x4.(x – y) – y4.(x – y)

= (x4 – y4).(x – y)

= (x2 + y2)(x2 – y2)(x – y)

= (x2 + y2).(x + y)(x – y)(x – y)

= (x2 + y2)(x + y)(x – y)2

Mà x2 + y2 ≥ 0; x + y ≥ 0; (x – y)2 ≥ 0

⇒ x5 + y5 – x4y – xy4 ≥ 0.

c) Ta có: Giải bài 4 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Tương tự. 4b +1 >0 và 4c +1 > 0

Áp dụng bất đẳng thức Cô-si cho hai số dương Giải bài 4 trang 160 SGK Đại Số 10 | Giải toán lớp 10 và 1 ta có:

Giải bài 4 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Không có giá trị nào của a, b, c thỏa mãn hệ trên nên dấu “=” của BĐT không xảy ra.

Giải bài 4 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Homin
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 9:17

Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn

chuche
Xem chi tiết
Người Vô Danh
12 tháng 10 2021 lúc 13:44

\(x^2+4y^2+z^2-2x+8y-6x+15=0\)

<=> \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1=0\)

mà \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\)≥0 

=> \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)≥1 

=> ko có giá trị nào của x,y,z thỏa mãn

Người Vô Danh
12 tháng 10 2021 lúc 13:48

\(A=\dfrac{1}{x^2-4x+9}=\dfrac{1}{\left(x-2\right)^2+5}\)

mà (x+2)2≥0

=> (x+2)2+5≥5 

=> \(\dfrac{1}{\left(x-2\right)^2+5}\)≤ 1/5 

=> Max A = 1/5 dấu ''='' xảy ra khi x=2 

thắng 1230
12 tháng 10 2021 lúc 14:58

lớp 4 thế à ai mà trả lời đc

nguyễn minh duy
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
Nguyễn Bảo Trân
26 tháng 3 2016 lúc 2:51

a) Ta có 

\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)

Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :

\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)

hay 

\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)

 

b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :

\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)

Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :

\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)

\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)

\(\Rightarrow lgc=\frac{1}{1-lga}\)

Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)