Một cách chứng minh khác của bất đẳng thức tam giác :
Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. Kẻ đường vuông góc AH đến đường thẳng BC \(\left(H\in BC\right)\)
a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông ở bài 1 để chứng minh AB + AC > BC
b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại
Cho tam giác ABC.Chứng minh các bất đẳng thức: AB+BC>AC; AC+BC>AB
Bất đẳng thức tam giác
AB+AC>BC
Với tam giác Abc có :AB+BC/.CA :AB+AC>BC;AC+BC>AC
từ bất đẳng thức tam giác ,ta cũng có :AB>CA-CB; AC>BC-BA ;BC>AC-AB
Chứng minh "bất đẳng thức tam giác mở rộng" : Với ba điểm A, B, C bất kì ta có :
\(AB+AC\ge BC\)
Cho tam giác ABC. Hãy chứng minh các bất đẳng thức:
1. BA + BC > AC
2. CA + CB > AB
Cho tam giác ABC vuông cân tại A. M là điểm bất kỳ trên BC không trùng với B và C; P, Q là hai điểm bất kỳ trên AB, AC sao cho AP = AQ. Gọi E, F lần lượt là hình chiếu của M trên AB, AC.
a) Tam giác FMC, tam giác MEB là các tam giác gì ?
b) Chứng minh rằng ME = AF; MF = AE.
c) Chứng minh rằng MP + MQ lớn hơn hoặc bằng AB .
d) Xác định vị trí của M để EF đạt giá trị nhỏ nhất.
Cho tam giác ABC cân tại A. Kẻ AH ^ BC (H Î BC).
a) Chứng minh: DAHB = DAHC.
b) Kẻ HM ^ AB (M Î AB), HN ^ AC (N Î AC). Chứng minh tam giác AMN cân.
Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng:
a)AD>AB+AC-BC/2
b)AD<AB+AC-BC/2
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)