AB+AC>BC
=>AB+AC-BC>0
=>AC-BC>-AB
=>BC-AC<AB
hay AB>CB-CA>CA-CB
AC>BC-BA
=>AC-BC+BA>0
=>AC+BC>BC(luôn đúng)
BC>AC-AB
=>BC-AC+AB>0
=>BC+AB>AC(luôn đúng)
AB+AC>BC
=>AB+AC-BC>0
=>AC-BC>-AB
=>BC-AC<AB
hay AB>CB-CA>CA-CB
AC>BC-BA
=>AC-BC+BA>0
=>AC+BC>BC(luôn đúng)
BC>AC-AB
=>BC-AC+AB>0
=>BC+AB>AC(luôn đúng)
Chứng minh :
+ AB+BC > AC
+ AC+BC > AB
< * Không dùng bất đẳng thức tam giác >
Cho tam giác ABC. Hãy chứng minh các bất đẳng thức:
1. BA + BC > AC
2. CA + CB > AB
Cho tam giác ABC.Chứng minh các bất đẳng thức: AB+BC>AC; AC+BC>AB
Một cách chứng minh khác của bất đẳng thức tam giác :
Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. Kẻ đường vuông góc AH đến đường thẳng BC \(\left(H\in BC\right)\)
a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông ở bài 1 để chứng minh AB + AC > BC
b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại
Chứng minh "bất đẳng thức tam giác mở rộng" : Với ba điểm A, B, C bất kì ta có :
\(AB+AC\ge BC\)
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
Tam giác ABC có AB=3dm BC=27dm độ dài AC là một số nguyên tố (AC được tính bằng đơn vị đo dm) Tính CA
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc A (D thuộc BC). Chứng minh DC-DB<AC-AB
cho tma giác ABC . gọi M là một điểm bất kif của tam giác đó.
CMR : MA +MB +MC > 1/2 (AB + AC + BC)