Cho tam giác ABC vuông tại A, phân giác BF (F thuộc AC). Kẻ vuông góc với BF tại H.
Lấy E sao cho H là trung điểm của EF. Kẻ FK vuông góc với BC (K thuộc BC).
a) Chứng minh: CE = CF; BA = BK
b) AK // CH
c) CH, FK, AB đồng quy tại một điểm
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD