Bài 3: Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Một cách chứng minh khác của bất đẳng thức tam giác :

Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. Kẻ đường vuông góc AH đến đường thẳng BC \(\left(H\in BC\right)\)

a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông ở bài 1 để chứng minh AB + AC > BC

b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại

Tuyết Nhi Melody
19 tháng 4 2017 lúc 14:24

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
かとり ちりど
Xem chi tiết
MuniuVịt
Xem chi tiết
Tuyết Nguyệt Song Trân
Xem chi tiết
Nguyễn Thanh An
Xem chi tiết
nguyen
Xem chi tiết
Takami Akari
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết