tìm a,b ϵ Z biết : a/3 = b/2 = c/5 và a - b + 2c = 77
câu 1 : tìm a,b ϵ Z biết : \(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{c}{5}\) và a - b + 2c = 77
câu 2 : (x\(^n\))\(^m\) = ?
Câu 1
Ta có: \(\dfrac{a}{3}=\dfrac{b}{2}=\dfrac{2c}{10}\) và a-b+2c=77
\(\dfrac{a-b+2c}{3-2+10}=\dfrac{77}{11}=7\)
\(\dfrac{a}{3}=7\) ⇒ a=21
\(\dfrac{b}{2}=7\) ⇒ b=14
\(\dfrac{c}{5}=7\) ⇒ c=35
Tìm 3 số a,b,c biết: a/z=b/3,b/4=c/5 và a+b-2c=10
(dấu ''/'' là dấu phần)
Tìm x, y, z biết rằng:
a, 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
b, a/2 = b/3 = c/4 và a mủ 2 - b mủ 2 + 2c mủ 2 = 108
a)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tc dãy tỉ
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
Với \(\frac{x}{\frac{3}{2}}=12\Rightarrow x=18\)
Với \(\frac{y}{\frac{4}{3}}=12\Rightarrow y=16\)
Với \(\frac{z}{\frac{5}{4}}=12\Rightarrow z=15\)
b)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tc dãy tỉ
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
Với \(\frac{a^2}{4}=4\Rightarrow a=4\)
Với \(\frac{b^2}{9}=4\Rightarrow b=6\)
Với \(\frac{2c^2}{32}=4\Rightarrow c=8\)
Tìm x ϵ Z biết:
a) | 2x – 5 | = 13
b) \(\left|7x+3\right|\) = 66
c) | 5x – 2| \(\le\) 0
a) I 2x-5 I = 13
=> 2x-5 =13 => x=9
hoặc 2x-5= -13 => x=\(\dfrac{-8}{2}\)
a) | 2x-5 | = 13
=>2x-5 = 13 hoặc 2x-5 = -13
+)2x-5 = 13
=>2x = 13+5 =18
+)2x-5 =-13
=>2x=-13+5 = -8
=>x=-4
Vậy x thuộc {9;-4}
Vậy x=9
b)|7x+3|=66
=>7x+3 = 66 hoặc 7x+3 = -66
+)7x+3=66
=>7x=66-3=63
=>x=9
+)7x+3=-66
=>7x=-66-3=-69
=>x=-69/7 (loại vì x thuộc Z )
Vậy x=9
c) Có | 5x-2|\(\le\)0
mà |5x-2|\(\ge\)0
=>|5x-2|=0
=>5x-2=0
=>5x=2
=>x=2/5 ( loại vì x thuộc Z)
Vậy x=\(\varnothing\)
Giải:
a) \(\left|2x-5\right|=13\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\left(t\backslash m\right)\\x=-4\left(t\backslash m\right)\end{matrix}\right.\)
b) \(\left|7x+3\right|=66\)
\(\Rightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{-69}{7}\end{matrix}\right.\)
Vì \(x\in Z\) nên x=9
c) \(\left|5x-2\right|\le0\)
mà \(\left|5x-2\right|\ge0\)
\(\Rightarrow\left|5x-2\right|=0\)
\(5x-2=0\)
\(5x=0+2\)
\(5x=2\)
\(x=2:5\)
\(x=\dfrac{2}{5}\) (loại)
Vậy \(x\in\) ∅
A) Tìm a,b,c
a= b/2=c/3 và 4a - 3b +2c= 36
B) tìm x,y,z
x/2=y/3,y/5=z/4 và x-y+z= -49
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{4a-3b+2c}{4-6+6}=\dfrac{36}{4}=9\\ \Rightarrow\left\{{}\begin{matrix}a=9\\b=18\\c=27\end{matrix}\right.\\ \dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{16}=\dfrac{x-y+z}{10-15+16}=\dfrac{-49}{11}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{490}{11}\\y=-\dfrac{735}{11}\\z=-\dfrac{784}{11}\end{matrix}\right.\)
Bài 1:
a) Tìm a,b,c biết (3c - 4b)/ 2 = (4a-2c) /3 = (2b - 3a) / 4; c + b + 2a = -27
b) Tìm x, y, z biết (3x - 4y) /5 = (5y - 3c) /4 = (4x - 5z) / 3 ; x^2 - z^3 = 36
tìm a,b,c biết a=2b=3/2c và a^2+ b^3- √((5^2)c)=a+b^3-5/3c
\(a=2b=\frac{3}{2}c\)
\(\Rightarrow b=\frac{1}{2}a\)
\(c=\frac{2}{3}a\)
Ta có:
\(a^2+b^3-\sqrt{5^2c}=a+b^3-\frac{5}{3c}\)
\(\Rightarrow a^2+\left(\frac{1}{2}a\right)^3-\sqrt{5^2.\left(\frac{2}{3}a\right)}=a+\left(\frac{1}{2}a\right)^3-\frac{5}{3.\left(\frac{2}{3}a\right)}\)
Bớt cả 2 vế cho \(\left(\frac{1}{2}a\right)^3\), có:
\(a^2-5.\sqrt{\frac{2}{3}a}=a+\frac{5}{2a}\)
Khó thế
Bài 1: Tìm các số x,y,z biết
a, x/y=5/8 và x-y=12
b, x/4=y/3=z/9 và x-3y+4z=62
c, a/3=b/8=c/5 và 3a+b-2c=14
d, a/10=b/6=c/21 và 5a+b-2x=28
Bài 2: tìm x,y,z biết
a, x/3=b/4; y/5=z/7 và 2x+3y-z=186
b, x/3=y/4; y/3=z/5 và 2x-3y+z=6
c, x:y:z=3:8:5 và 3x+y-27=14
Giúp mk lm vs ạ mk cảm ơn nhiều ạ
Bài 4:(chi tiết)
a) Tìm a ϵ Z để -13/a + 7/a là số nguyên.
b) Tìm b ϵ Z để 2b-3/15 + b+1/5 là số nguyên
a: Để -13/a+7/a là số nguyên thì \(a\inƯ\left(-6\right)\)
hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
b: \(\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)
Để b/3 là số nguyên thì b=3k(k là số nguyên)