tìm điều kiện để √(x-.3)(4-x) tồn tại
Tìm điều kiện tham số m để tồn tại x thỏa mãn \(\sqrt{x}\) + 4 = m ( \(\sqrt{x}\) + 5 )
ĐKXĐ: \(x\ge0\)
\(\sqrt{x}+4=m\sqrt{x}+5m\)
\(\Leftrightarrow\left(m-1\right)\sqrt{x}=4-5m\)
- Với \(m=1\) không tồn tại x
- Với \(m\ne1\Rightarrow\sqrt{x}=\dfrac{4-5m}{m-1}\)
Do \(\sqrt{x}\ge0\Rightarrow\dfrac{4-5m}{m-1}\ge0\Rightarrow\dfrac{4}{5}\le m< 1\)
Cho
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
Tìm điều kiện để A tồn tại
Tìm điều kiện để A là số nguyên
ĐK: x\(\ge0\)
\(Tacó:A=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-4}{\sqrt{x+3}}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+3}-\dfrac{4}{\sqrt{x}-3}=1-\dfrac{4}{\sqrt{x}-3}\)
Ta thấy để A là số nguyên thì \(\dfrac{4}{\sqrt{x}-3}nguyên\\ =>\sqrt{x}-3\inƯ\left(4\right)\)
\(=>\left\{{}\begin{matrix}\sqrt{x}-3=\pm1< =>x=16;x=4\\\sqrt{x}-3=\pm2< =>x=25;x=1\\\sqrt{x}-3=\pm4< =>x=49\\\end{matrix}\right.\)
Vậy S=....
Tồn tại duy nhất một giá trị m để bất phương trình \(x^2\le2mx-m^2+m-3\) có tập nghiệm \(S=\left[x_1;x_2\right]\) thỏa mãn điều kiện \(\sqrt{x^2_1+2mx_2+m^2-m+3}=\left|m-9\right|\). Tìm m
BPT \(x^2-2mx+m^2-m+3\le0\) có tập nghiệm S đã cho nên \(x_1;x_2\) là nghiệm:
\(x^2-2mx+m^2-m+3=0\) với \(\Delta=m^2-\left(m^2-m+3\right)=m-3\ge0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+3\end{matrix}\right.\)
Mặt khác, do \(x_1\) là nghiệm nên: \(x_1^2=2mx_1-m^2+m-3\)
Thay vào bài toán:
\(\sqrt{2mx_1-m^2+m-3+2mx_2+m^2-m+3}=\left|m-9\right|\)
\(\Leftrightarrow\sqrt{2m\left(x_1+x_2\right)}=\left|m-9\right|\)
\(\Leftrightarrow\sqrt{4m^2}=\left|m-9\right|\)
\(\Leftrightarrow4m^2=m^2-18m+81\Rightarrow\left[{}\begin{matrix}m=3\\m=-9\left(loại\right)\end{matrix}\right.\)
Cho (d):y=(4m-3)x+9(m#3/4) ; (d'):y=(m+6)x+m^2 (m# -6)
a)Tìm điều kiện của m để (d)//(d')
b)Tìm điều kiện của m để (d) trùng (d')
c)Tìm điều kiện của m để (d) cắt (d')
d)Tìm điều kiện của m để (d) cắt (d') tại một điểm trên trục tung
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
có tồn tại hay ko 3 số nguyên x,y,z thoả mãn điều kiện
\(x^3+y^3+z^3=x+y+z+2020\)
Lời giải:
$x^3+y^3+z^3=x+y+z+2020$
$\Leftrightarrow x(x^2-1)+y(y^2-1)+z(z^2-1)=2020$
$\Leftrightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)=2020$
Vì $x,x-1,x+1$ là 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 6$
Tương tự: $y(y-1)(y+1), z(z-1)(z+1)\vdots 6$
$\Rightarrow x(x-1)(x+1)+y(y-1)(y+1)+z(z-1)(z+1)\vdots 6$
Mà $2020\not\vdots 6$ nên không tồn tại 3 số nguyên $x,y,z$ thỏa mãn đk đã cho.
Cho bỉu thức P=(x+3/x-3-x-3/x+3+4/9-x^2).3x-1/x-3 a)tìm điều kiện xác định và rút gọn b)tìm gt bỉu thức P tại x thỏa mãn x=4 c)tìm gt của x để P=1 d)tìm gt nguyên của x để P có gt nguyên
a: \(P=\dfrac{x^2+6x+9-x^2+6x-9-4}{\left(x-3\right)\left(x+3\right)}:\dfrac{3x-1}{x-3}\)
\(=\dfrac{4\left(3x-1\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{3x-1}=\dfrac{4}{x+3}\)
Vì sao lao động là điều kiện để con người và xã hội tồn tại và phát triển?
Cho (d):y=(4m-3)x+9(m#3/4) ; (d'):y=(m+6)x+m^2 (m# -6)
a)Tìm điều kiện của m để (d)//(d')
b)Tìm điều kiện của m để (d) trùng (d')
c)Tìm điều kiện của m để (d) cắt (d')
d)
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
\(a,\left(d\right)\)//\(\left(d'\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}2m-3=m\\-m+2\ne3m-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m=3\)
b, (d) cắt (d') \(\Leftrightarrow2m-3\ne m\Leftrightarrow m\ne3\)