Cho tứ giác ABCD , biết góc A : B : C : D = 1 : 2 : 3 : 4
a, Tính các góc của tứ giác
b, CM AB//CD
Cho tứ giác ABCD biết A:B:C:D=1:2:3:4
a)Tính các góc của tứ giác
b)CMR : AB//CD
c)Gọi giao điểm của AD và BC là E . Tính các góc tứ giác CDE
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{360^0}{10}=36^0\)
Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)
b: ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Bài 1: Tính số đo các góc C và D của tứ giác ABCD biết góc A=120 độ, góc B=90 độ, góc C=2.góc D
Bài 2: Cho tứ gics ABCD có góc A=góc B và BC=AD. Cm:
a) Tứ gác DAB= tứ giác CBA, từ đó \(\Rightarrow\)BD=AC
b) Góc ADC=góc BCD
c) AB//CD
Bài 3: Cho tứ giác ABCD và 1 điểm M thuộc miền trong của tứ giác. Cm: MA+MB+MC+MD \(\ge\)AB+CD
Các bn trả lời giúp mik nhé!!
: Cho tứ giác ABCD biết :
a) Tính các góc của tứ giác
b) Chứng minh AB//CD
c) AD cắt BC tại E. Tính các góc của tam giác EDC.
Cho tứ giác ABCD biết :
a) Tính các góc của tứ giác
b) Chứng minh AB //CD
c) AD cắt BC tại E. Tính các góc của tam giác EDC
a) \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=1:2:3:4\)
\(\Rightarrow\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=1.36^0=36^0\\\widehat{B}=2.36^0=72^0\\\widehat{C}=3.36^0=108^0\\\widehat{D}=4.36^0=144^0\end{matrix}\right.\)
b) Ta có: \(\widehat{A}+\widehat{D}=36^0+144^0=180^0\) và 2 góc này ở vị trí trong cùng phía.
\(\Rightarrow\)AB//CD.
c) \(\widehat{EAB}=36^0;\widehat{EBA}=72^0\)
\(\widehat{AEB}=180^0-\widehat{EAB}-\widehat{EBA}=180^0-36^0-72^0=72^0\)
Cho tứ giác MNPQ biết M:N:P:Q=1:2:3:4
a) Tính các góc của tứ giác
b) CMR MN // PQ
c) Gọi R là giao điểm của MQ với NP. Tính các góc của tam giác PQR
Hình vẽ chỉ mang tính chất minh họa nên không đúng lắm đâu nha.Mong bạn thông cảm.
a)a) Tứ giác MNPQMNPQ có: ˆM+ˆN+ˆP+ˆQ=360oM^+N^+P^+Q^=360o
Theo bài ra ta có: ˆM1=ˆN2=ˆP3=ˆQ4M^1=N^2=P^3=Q^4
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
ˆM1=ˆN2=ˆP3=ˆQ4=ˆM+ˆN+ˆP+ˆQ1+2+3+4=360o10=36oM^1=N^2=P^3=Q^4=M^+N^+P^+Q^1+2+3+4=360o10=36o
⇒ˆM=1.36o=36o⇒M^=1.36o=36o
\hat{N}=2.36^o=72^o`
\hat{P}=3.36^o=108^o`
\hat{Q}=4.36^o=144^o`
b)b) Ta có: ˆM+ˆMQP=36oM^+MQP^=36o+144=180o+144=180o
mà 22 góc này nằm ở vị trí trong cùng phía
⇒MN//PQ⇒MN//PQ
c)Vìc)VìMN////PQ(cmt)`
⇒ˆRQP=ˆM=36o⇒RQP^=M^=36o
và ˆRPQ=ˆN=72oRPQ^=N^=72o
ΔRQPΔRQP có: ˆRQP+ˆRPQ+ˆR=180oRQP^+RPQ^+R^=180o
hay 36o36o+72o+72o+ˆR=180o
Bài 1: Cho tứ giác ABCD biết góc A : B : C : D = 1 : 2 : 3 : 4
a) Tính các góc của tứ giác ABCD
b) Chứng minh: AB // CD
c) Gọi giao điểm của AD cắt BC = E. Tính các góc của tam giác CDE
Bài 2: Cho tứ giác ABCD có góc C = \(80^0\) , D = \(70^0\) . Các tia phân giác của các góc A và B cắt nhau tại I. Tính AIB
Bài 3: Cho tứ giác ABCD có AB = BC; CD = DA
a) Chứng minh rằng BD là đường trung trực của AC
b) Cho biết góc B = \(100^0\) ; D = \(70^0\) . Tính góc A và C
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
Bài 3: Cho tứ giác ABCD có AB//CD và góc D =60 độ
a) Tính số đo góc A?
b) Biết góc B phần góc D = 4/5. Tính góc B, góc C
Bài 4: Cho tứ giác ABCD, góc A - góc B = 40 độ. Các tia phân giác của góc C, góc D cắt nhau tại O. Cho biết góc COD= 110 độ. Chứng minh rằng AB vuông góc với BC
Nhờ các bạn hướng dẫn mình hai bài này
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4
1)Cho tứ giác ABCD ;góc B=gocA+20 độ;góc C =3A;góc D-C=20 độ
a) tính các góc của tứ giác ABCD
b) tứ giác ABCD có phải hình thang không ? vì sao?
2)Cho hình thang ABCD (AB//CD).Tính các góc của hình thang ABCD biết góc A=góc D+40 độ;góc B=2C
ai biết giải làm ơn giải hộ cảm ơn nhiều
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC