a) \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=1:2:3:4\)
\(\Rightarrow\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=1.36^0=36^0\\\widehat{B}=2.36^0=72^0\\\widehat{C}=3.36^0=108^0\\\widehat{D}=4.36^0=144^0\end{matrix}\right.\)
b) Ta có: \(\widehat{A}+\widehat{D}=36^0+144^0=180^0\) và 2 góc này ở vị trí trong cùng phía.
\(\Rightarrow\)AB//CD.
c) \(\widehat{EAB}=36^0;\widehat{EBA}=72^0\)
\(\widehat{AEB}=180^0-\widehat{EAB}-\widehat{EBA}=180^0-36^0-72^0=72^0\)