\(\sqrt{3-\sqrt{5}}\) : \(\sqrt{2}\)
Giúp mình với
\(\dfrac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}-\dfrac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Giải và giải thích giúp mình với
Ta có: \(\dfrac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}-\dfrac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\dfrac{6+2\sqrt{5}}{2\sqrt{2}+\sqrt{2}\cdot\left(\sqrt{5}+1\right)}-\dfrac{6-2\sqrt{5}}{2\sqrt{2}-\sqrt{2}\left(\sqrt{5}-1\right)}\)
\(=\dfrac{6+2\sqrt{5}}{2\sqrt{2}+\sqrt{10}+\sqrt{2}}-\dfrac{6-2\sqrt{5}}{2\sqrt{2}-\sqrt{10}+\sqrt{2}}\)
\(=\dfrac{6+2\sqrt{5}}{3\sqrt{2}+\sqrt{10}}-\dfrac{6-2\sqrt{5}}{3\sqrt{2}-\sqrt{10}}\)
\(=\dfrac{\left(6+2\sqrt{5}\right)\left(3\sqrt{2}-\sqrt{10}\right)-\left(6-2\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)}{8}\)
\(=\dfrac{18\sqrt{2}-6\sqrt{10}+6\sqrt{10}-10\sqrt{2}-18\sqrt{2}-6\sqrt{10}+6\sqrt{10}+10\sqrt{2}}{8}\)
\(=0\)
1) Tính:
\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5-1}}\)
\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
Giúp mình với, mình cần gấp
\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{14+6\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\sqrt{5^2}+2.3\sqrt{5}+3^2}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\left(\sqrt{5}+3\right)^2}-\dfrac{4}{\sqrt{5}-1}\\ =\left|\sqrt{5}+3\right|-\dfrac{4}{\sqrt{5}-1}\\ =\dfrac{\left(\sqrt{5}+3\right)\left(\sqrt{5}-1\right)-4}{\sqrt{5}-1}\\ =\dfrac{2+2\sqrt{5}-4}{\sqrt{5}-1}\\ =\dfrac{-2+2\sqrt{5}}{\sqrt{5}-1}\\ =\dfrac{2\left(-1+\sqrt{5}\right)}{\sqrt{5}-1}\\ =2\)
\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\\ =3\sqrt{3}-\dfrac{6}{\sqrt{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
\(=\dfrac{3\sqrt{3}.\sqrt{3}-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{9-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}\\ =1\)
\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\\ =\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}\\ =\dfrac{27\sqrt{6}+18\sqrt{2}-18\sqrt{2}-4\sqrt{6}}{\left(3\sqrt{6}\right)^2-\left(2\sqrt{2}\right)^2}\\ =\dfrac{23\sqrt{6}}{54-8}\\ =\dfrac{23\sqrt{6}}{46}\\ =\dfrac{\sqrt{6}}{2}\)
Câu b á bạn, chỗ \(\dfrac{4}{\sqrt{5-1}}\) là đề như vậy hay là \(\dfrac{4}{\sqrt{5}-1}\) vậy?
Mọi người ơi giúp mình với. Mình đang cần gấp
\(\sqrt{5}+3\sqrt{3}+\sqrt{6-3\sqrt{3}}\) =?
A.\(4\sqrt{2}\) B.\(\sqrt{2}\) C.3\(\sqrt{2}\) D.2\(\sqrt{2}\)
\(\text{Theo đề bài: }=\dfrac{3\sqrt{2}+6\sqrt{3}+2\sqrt{5}-\sqrt{6}}{2}\)
P=\(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)
Rút gọn P
AI GIÚP MÌNH VỚI...GIÚP MÌNH MÌNH SẼ TÍCH CHO BẠN GIÚP MÌNH T^T <3
Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\frac{7-3}{2}=2\)
Vậy \(P=2\)
\(\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{ }5\right).\left(\sqrt{3-\sqrt{5}}\right)\)
Giúp mình với
(√10 - √2)(3 + √5)√(3 - √5)
= (√10 - √2).√[(3 + √5)².(3 - √5)]
= √2(√5 - 1).√[4.(3 + √5)]
= 2√2.√[(√5 - 1)².(3 + √5)]
= 2√2.√[(5 - 2√5 + 1).(3 + √5)]
= 2√2.√(18 + 6√5 - 6√5 - 10)
= 2√2.√8
= 2√2.2√2
= 8
B= \(\dfrac{2\sqrt{3+\sqrt{5}-\sqrt{13}+\sqrt{48}}}{\sqrt{6}-\sqrt{2}}\)
GIÚP MÌNH VỚI Ạ
Chứng minh đẳng thức"
\(\dfrac{A+\sqrt{A}}{1+\sqrt{A}}=\dfrac{\sqrt{A}-A}{1-\sqrt{A}}\) (với A không âm và A khác 1)
giúp mình với ạ
\(\dfrac{8}{\sqrt{5}-1}-\dfrac{22}{4+\sqrt{5}}+\dfrac{\sqrt{15}+2\sqrt{5}}{2+\sqrt{3}}\)
rút gọn giúp mình với
\(\dfrac{8}{\sqrt{5}-1}-\dfrac{22}{4+\sqrt{5}}+\dfrac{\sqrt{15}+2\sqrt{5}}{2+\sqrt{3}}\)
\(=\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\dfrac{22\left(4-\sqrt{5}\right)}{\left(\sqrt{5}+4\right)\left(4-\sqrt{5}\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}+2\right)}{2+\sqrt{3}}\)
\(=\dfrac{8\sqrt{5}+8}{5-1}-\dfrac{88-22\sqrt{5}}{16-5}+\sqrt{5}\)
\(=\dfrac{8\sqrt{5}+8}{4}-\dfrac{88-22\sqrt{5}}{11}+\sqrt{5}\)
\(=2\sqrt{5}+2-8+2\sqrt{5}+\sqrt{5}=5\sqrt{5}-6\)
có ai biết giải bài này không giúp mình với mình đang cần gấp, xin cảm ơn
Bài 20: rút gọn
1, \(\sqrt{9-4\sqrt{5}}.\sqrt{9+4\sqrt{5}}\)
2, \(\left(2\sqrt{2}-6\right).\sqrt{11+6\sqrt{2}}\)
3, \(\sqrt{2}.\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)\)
4, \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}-\sqrt{2}\right).\left(2+\sqrt{3}\right)\)
5, \(\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}\)
Bài 21: rút gọn
1, \(5\sqrt{\dfrac{1}{5}}\) 2, \(\dfrac{12}{5}\sqrt{\dfrac{5}{4}}\)
3, \(\dfrac{30}{5\sqrt{6}}\) 4, \(\dfrac{20}{2\sqrt{5}}\)
5, \(\dfrac{2-\sqrt{2}}{\sqrt{2}}\)
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
Giúp mình bài này với ạ...mình cần gấp, cảm ơn mọi người
a) \(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
b) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
a/ Đặt \(\hept{\begin{cases}\sqrt{3+\sqrt{5}}=a\\\sqrt{3-\sqrt{5}}=b\end{cases}}\)
Khi đó ta có a2 + b2 = 6; ab = 2; a + b = \(\sqrt{10}\) ; a - b = \(\sqrt{2}\); a2 - b2 = \(2\sqrt{5}\)
Ta có cái ban đầu
\(=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}\)=
\(\frac{\sqrt{10}a^2+a^2b-\sqrt{10}b^2-ab^2}{10+\sqrt{10}a+\sqrt{10}b+ab}\)
\(=\frac{10\sqrt{2}+2\sqrt{2}}{10+10+2}=\frac{6\sqrt{2}}{11}\)