CHo (x + 3y)^3 - 6(x+3y)^2 + 12(x +3y) =-19. Tính giá trị của biểu thức x +3y
Cho (x+3y)^3 - 6(x+3y)^2 + 12(x+3y)= -19 . Tính giá trị x+3y
Đặt \(x+3y=t\) thì biểu thức được viết lại dưới dạng biến \(t\) như sau:
\(t^3-6t^2+12t=-19\)
\(\Leftrightarrow\) \(t^3-6t^2+12t+19=0\)
\(\Leftrightarrow\) \(\left(t-1\right)\left(t^2-7t+19\right)=0\) \(\left(a\right)\)
Mà \(t^2-7t+19=\left(t-\frac{7}{2}\right)^2+6\frac{3}{4}>0\) với mọi \(t\)
nên từ \(\left(a\right)\) \(\Rightarrow\) \(t=1\), tức là \(x+3y=1\)
Cho 3y-x=6. Tính giá trị của biểu thức: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}\)
Bài này quá dễ:vv
Ta có 3y-x=6
=> \(\left\{{}\begin{matrix}3y=6+x\\x=3y-6\end{matrix}\right.\)
Thay vào A ta có: \(A=\dfrac{x}{y-2}+\dfrac{2x-3y}{x-6}=\dfrac{3y-6}{y-2}+\dfrac{2x-6-x}{x-6}=\dfrac{3\left(y-2\right)}{y-2}+\dfrac{x-6}{x-6}=3+1=4\)Vậy khi 3y-x=6 thì A=4
Cho 3y-x = 6. Tính giá trị của biểu thức:
A=( x/y-2) +(2x-3y/ x-6)
\(3y-x=6\) => \(x=3y-6\)
Thay \(x=3y-6\) vào biểu thức A. Ta có:
\(A=\left(\frac{3y-6}{y-2}\right)+\left(\frac{2\left(3y-6\right)-3y}{3y-6-6}\right)=\left(\frac{3\left(y-2\right)}{y-2}\right)+\left(\frac{6y-12-3y}{3y-12}\right)\)
\(A=\left(\frac{3\left(y-2\right)}{y-2}\right)+\left(\frac{3y-12}{3y-12}\right)=3+1=4\)
bn \(2x-\frac{3y}{x}-6\)
hay là \(\frac{2x-3y}{x-6}\)
cho biểu thức A = (x-3y)(x^2-2xy+9y^2)+3y(x+3y)(x-3y)-x(3xy+7x-7)
a.chứng minh rằng biểu thức a không phụ thuộc vào giá trị của biến y
b.tính giá trị của biểu thức a khi x =-1
Lời giải:
Sửa đề đoạn $x-3y$ thành $x+3y$
$A=x^3+(3y)^3+3y(x^2-9y^2)-(3x^2y+7x^2-7x)$
$=x^3+27y^3+3x^2y-27y^3-3x^2y-7x^2+7x$
$=x^3-7x^2+7x$ không phụ thuộc vào giá trị của biến $y$ (đpcm).
b.
Khi $x=-1$ thì:
$A=(-1)^3-7(-1)^2+7(-1)=-1-7-7=-15$
chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến A=(x+3y) ( x^2 - 3xy +9y^2) + 3y(x+3y)(x-3y)-x(3xy+x^2 -5) -5x+1
\(A=(x+3y)(x^2-3xy+9y^2)+3y(x+3y)(x-3y)-x(3xy+x^2-5)-5x+1\\A=(x+3y)[x^2-x\cdot3y+(3y)^2]+3y[x^2-(3y)^2]-3x^2y-x^3+5x-5x+1\\A=x^3+(3y)^3+3y(x^2-9y^2)-3x^2y-x^3+1\\A=x^3+27y^3+3x^2y-27y^3-3x^2y-x^3+1\\A=1\)$\Rightarrow$ Giá trị của $A$ không phụ thuộc vào giá trị của biến.
\(\dfrac{x^3-4x^2y+3y^2-4}{3x^3-3y^2-3y}\) tính giá trị biểu thức B khi x=\(\dfrac{1}{2}\) ; y=-1
Thay \(x=\dfrac{1}{2};y=-1\) vào B, ta được:
\(B=\left[\left(\dfrac{1}{2}\right)^3-4\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)^2-4\right]:\left[3\cdot\left(\dfrac{1}{2}\right)^3-3\cdot\left(-1\right)^2-3\cdot\left(-1\right)\right]\)
\(=\left(\dfrac{1}{8}+4\cdot\dfrac{1}{4}+3\cdot1-4\right):\left(3\cdot\dfrac{1}{8}-3\cdot1+3\right)\)
\(=\left(\dfrac{1}{8}+1+3-4\right):\left(\dfrac{3}{8}-3+3\right)\)
\(=\dfrac{1}{8}\cdot\dfrac{8}{3}=\dfrac{1}{3}\)
cho tỉ lệ thức 3/x-5=4/3y+10. Tính giá trị của biểu thức A=2x+3y/x-3y-15 hãy giải thích rõ ràng vì sao làm như vậy
cho : \(\left(x+3y\right)^3-6\left(x+3y\right)^2+12\left(x+3y\right)\)= -19 . Tính x+3y
x3+3x23y+3x3y
đéo giải nửa án lớn bỏ đi con
Đặt x + 3y = a, ta có:
a3 - 6a2 +12a = -19
=> a3 - 6a2 +12a +19 = 0
=> a3 +a2 - 7a2 - 7a +19a +19 =0
=> a2(a +1) - 7a(a +1) +19(a+1) =0
=> (a2 -7a +19)(a +1)=0
=> a + 1 = 0 ( Vì a2 -7a +19 > 0 với mọi a)
=> a = -1
=> x + 3y = -1
Vậy: x + 3y = -1
Câu 1:Khi phân tích đa thức:x^2y-4xy thành nhân tử ta được kết quả là:
A.x(xy-4y)B.x(x^2-4)C.y(x^2-4)
D.xy(x-4)
Câu 2:Kết quả của phép tính:(2x+3y).(2x-3y) là:
A.(2x-3y)^2B.(2x+3y)^2C.2x^2-3y^2
D.4x^2-9y
Câu3:Với mọi giá trị của x thì giá trị của biểu thức:2x(3x-1)-6x(x+1)+(3+8x)là:
A.2 B.3 C.4 D.8
Câu 4:Phân tích đa thức thành nhân tử:(x-4)^2+(x-4),ta được kết quả cuối cùng là:
A.(x-4)(x-3) B.(x-4)(x-5) C.(x+4)(x+3)
D.(x+4)(x-4)
Câu 5:Giá trị x trong đẵng thức:x(x-2)+x-2=0 là:
A.2 B.1 C.-1 D.2 hoặc -1
Câu 6: Giá trị của biểu thức A=x^2-6x+9 với x=103 là:
A.1.000.000 B.100.000 C.10.000
D.300
Câu 7:Phân tích đa thức x^2+2xy-9+y^2 thành nhân tử,ta được:
A.(x+2y)(x+3) B.(x+y+3)(x+y-3)
C.(x-y+3)(x+y-3) D.(x+y+3)(x+2y)