a)\(\left(2x+\frac{1}{2}\right)^2=\frac{1}{4}\)
b) \(\frac{x}{2y}=\frac{1}{3}\)và \(5x+y=26\)
Giải hệ phương trình :
a, \(\left\{{}\begin{matrix}2x-\frac{1}{y}=2y-\frac{1}{x}\\2\left(2x^2+y^2\right)+4\left(x-y\right)=7xy-8\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}2x^3-5y=2y^3-5x\\\frac{3y}{x^2+y+1}+\frac{5x}{\left(y+1\right)^2+x}=x-y+2\end{matrix}\right.\)
(Mong mọi người giúp đỡ! Tick cho mọi người nha !)
a/ ĐKXĐ: ...
\(2x-\frac{1}{y}=2y-\frac{1}{x}\Leftrightarrow\frac{2xy-1}{y}=\frac{2xy-1}{x}\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\2xy-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\xy=\frac{1}{2}\end{matrix}\right.\)
TH1: \(x=y\Rightarrow6x^2=7x^2-8\Rightarrow x^2=8\Rightarrow...\)
TH2: \(xy=\frac{1}{2}\Rightarrow y=\frac{1}{2x}\)
\(\Rightarrow2\left(2x^2+\frac{1}{4x^2}\right)+4\left(x-\frac{1}{2x}\right)=\frac{7}{2}-8\)
\(\Leftrightarrow4\left(x^2+\frac{1}{4x^2}\right)+8\left(x-\frac{1}{2x}\right)+9+4x^2=0\)
Đặt \(x-\frac{1}{2x}=t\Rightarrow x^2+\frac{1}{4x^2}=t^2+1\)
\(\Rightarrow4\left(t^2+1\right)+8t+9+4x^2=0\)
\(\Leftrightarrow4\left(t+1\right)^2+4x^2+9=0\)
Vế trái luôn dương nên pt vô nghiệm
b/ ĐKXĐ: ...
\(2x^3-2y^3+5x-5y=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2+5\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+x^2+y^2+5\right]=0\)
\(\Leftrightarrow x=y\) (ngoặc sau luôn dương)
Thế vào pt dưới:
\(\frac{3x}{x^2+x+1}+\frac{5x}{x^2+3x+1}=2\)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{1}{x}+1}+\frac{5}{x+\frac{1}{x}+3}=2\)
Đặt \(x+\frac{1}{x}+1=t\)
\(\Rightarrow\frac{3}{t}+\frac{5}{t+2}=2\Leftrightarrow3\left(t+2\right)+5t=2t\left(t+2\right)\)
\(\Leftrightarrow2t^2-4t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}+1=-1\\x+\frac{1}{x}+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2-2x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Tìm đa thức M , biết :
a) \(M-\left(\frac{1}{2}x^2y-5xy^2+x^3-y^3\right)=\frac{3}{4}xy^2-2x^2y+\)\(2y^3-\frac{1}{3}x^3\)
b)\(\left(-\frac{1}{3}x^3y^3+5x^2y^2-\frac{5}{2}xy\right)-M=xy-\frac{1}{6}x^3y^3-3x^2y^2\)
c)\(\left(\frac{2}{7}xy^4-5x^5+7x^2y^3-3\right)+M=0\)
26 ,giải phương trình.
a,\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
b,\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,\(\frac{x-1}{x+2}+\frac{x-2}{x+1}=\frac{2\left(x^2+2\right)}{x^2-4}\)
d,\(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Bài 1: rút gọn phân thức
a) \(\frac{14xy^2\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
b) \(\frac{8xy\left(3x-1\right)^2}{12x^3\left(1-3x\right)}\)
c) \(\frac{20x^2-45}{\left(2x+3\right)^2}\)
d) \(\frac{5x^2-10xy}{2\left(2y-x\right)^3}\)
e) \(\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
f) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}\)
g) \(\frac{32x-8x^2+2x^3}{x^3+64}\)
h) \(\frac{5x^3+5x}{x^4-1}\)
Bài 2: Quy đồng mẫu thức của các phân thức sau
a) \(\frac{7x-1}{2x^2+6x};\frac{5-3x}{x^2-9}\)
b) \(\frac{x+1}{x-x^2};\frac{x+2}{2-4x+2x^2}\)
c) \(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1};\frac{6}{x-1}\)
d) \(\frac{7}{5x};\frac{4}{x-2y};\frac{x-y}{8y^2-2x^2}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
Giải hpt sau:
a) \(\left\{{}\begin{matrix}\sqrt{5}x+\left(1-\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+\sqrt{5}y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\frac{3x}{x+1}-\frac{2y}{y+4}=4\\\frac{2x}{x+1}-\frac{5y}{y+4}=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{2}{2x-y}+\frac{3}{x-2y}=\frac{1}{2}\\\frac{2}{2x-y}-\frac{1}{x-2y}=\frac{1}{18}\end{matrix}\right.\)
cm các biểu thức sau ko phụ thuộc vào biến:
a,\(\left[\frac{2\left(x+1\right)\left(y+1\right)}{\left(x+1\right)^2-\left(y+1\right)^2}+\frac{x-y}{2x+2y+4}\right].\frac{2x+2}{x+y+2}+\frac{y+1}{y-x}\)
b,\(\left[2\left(x+y\right)+1-\frac{1}{1-2x-2y}\right]:\left[2x+2y-\frac{4x^2+8xy+4y^2}{2x+2y-1}\right]+2\left(x+y\right)\)
Bài 2. Tìm điều kiện xác định
a)\(\frac{x-4}{\frac{2x-1}{x-1}}\)
b) \(\frac{-5}{\frac{x-2}{3x+1}}\)
c)\(\frac{x^2+2x+5}{2x^2+5x+3}\)
d)\(\frac{x^2}{\left(x+y\right)\left(1-y\right)}\)
e)\(\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Để giá trị của biểu thức \(\frac{x-4}{\frac{2x-1}{x-1}}\) được xác định
thì \(\frac{2x-1}{x-1}\ne0\)
⇔\(\left\{{}\begin{matrix}2x-1\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\ne1\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\x\ne1\end{matrix}\right.\)
Vậy: ĐKXĐ của biểu thức \(\frac{x-4}{\frac{2x-1}{x-1}}\) là \(x\ne\frac{1}{2}\) và x≠1
b)
Để giá trị của biểu thức \(\frac{-5}{\frac{x-2}{3x+1}}\) được xác định
thì \(\frac{x-2}{3x+1}\ne0\)
⇔\(\left\{{}\begin{matrix}x-2\ne0\\3x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\3x\ne-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{-1}{3}\end{matrix}\right.\)
Vậy: ĐKXĐ của biểu thức \(\frac{-5}{\frac{x-2}{3x+1}}\) là \(x\ne\frac{-1}{3}\) và x≠2
c)Để giá trị của biểu thức \(\frac{x^2+2x+5}{2x^2+5x+3}\) thì \(2x^2+5x+3\ne0\)
hay \(2x^2+2x+3x+3\ne0\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\2x\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\frac{-3}{2}\end{matrix}\right.\)
Vậy: Để giá trị của biểu thức \(\frac{x^2+2x+5}{2x^2+5x+3}\) được xác định thì \(x\ne\frac{-3}{2}\) và x≠1
d) Để giá trị của biểu thức \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}\) được xác định thì
\(\left(x+y\right)\left(1-y\right)\ne0\)
hay \(\left\{{}\begin{matrix}x+y\ne0\\1-y\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\y\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)
Vậy: Để giá trị của biểu thức \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}\) được xác định thì x≠-1 và y≠1
e) Để giá trị của biểu thức \(\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\) được xác định thì
\(\left(1+x\right)\left(1-y\right)\ne0\)
hay \(\left\{{}\begin{matrix}1+x\ne0\\1-y\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)
Vậy: Để giá trị của biểu thức \(\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)được xác định thì x≠-1 và y≠1
Bài 2: Rút gọn phân thức
\(A=\frac{10x^2-7+5x-2xy}{1-2x^2+x}\)
Bài 3: Chứng minh rằng
a) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\frac{xy+y^2}{2x-y}\)
b) \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{1}{x-y}\)
Bài 4: Quy đồng mẫu thức các phân thức sau
a) \(\frac{5x}{\left(x+3\right)^3}\&\frac{x-4}{3x\left(x+2\right)^2}\)
b) \(\frac{x+1}{x-x^2}\&\frac{x+2}{2x^2+2-4x}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!