Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
zZSleeperZz
Xem chi tiết
An Thy
15 tháng 7 2021 lúc 9:20

ý bạn là chứng minh \(\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

tam giác ABC vuông tại A có AH là đường cao 

\(\Rightarrow HB.HC=AH^2\Rightarrow\sqrt{HB.HC}=AH\)

Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.HC\right)^2=BH^2.CH^2\)

tam giác AHB vuông tại H có HD là đường cao \(\Rightarrow BH^2=BD.BA\)

tam giác AHC vuông tại H có HF là đường cao \(\Rightarrow CH^2=CE.CA\)

\(\Rightarrow BH^2.CH^2=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\Rightarrow BD.CE.BC.AH=AH^4\)

\(\Rightarrow BD.CE.BC=AH^3\Rightarrow\sqrt[3]{BD.CE.BC}=AH\)

\(\Rightarrow\sqrt{HB.HC}=\sqrt[3]{BD.CE.BC}\)

Trịnh Thanh Mai
Xem chi tiết
tuan ngo
Xem chi tiết
Big City Boy
Xem chi tiết
Anh Van
Xem chi tiết
Quỳnh Nhi Hoàng Thi
Xem chi tiết
Quynh
Xem chi tiết
Không Tên
16 tháng 7 2018 lúc 21:08

A B C H E D

Dễ dàng chứng minh được:  \(HEAD\)là hình chữ nhật

\(\Rightarrow\)\(HE=AD=12\)

          \(HD=EA=18\)

Áp dụng hệ thức lượng ta có:

       \(HD^2=AD.DC\)

\(\Rightarrow\)\(DC=\frac{HD^2}{AD}\)

\(\Rightarrow\)\(DC=\frac{18^2}{12}=27\)

\(\Rightarrow\)\(AC=AD+DC=12+27=39\)

            \(HE^2=BE.AE\)

\(\Rightarrow\)\(BE=\frac{HE^2}{AE}\)

\(\Rightarrow\)\(BE=\frac{12^2}{18}=8\)

\(\Rightarrow\)\(AB=BE+EA=8+18=26\)

MixiGaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 21:17

loading...

Vũ Minh Phương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 18:05

Tứ giác AEHF là hình chữ nhật (có 3 góc vuông) \(\Rightarrow HE=AF\)

Áp dụng định lý Pitago trong tam giác vuông AFH:

\(AH^2=AF^2+HF^2=HE^2+HF^2\)

Áp dụng hệ thức lượng trong tam giác vuông AHB với đường cao HF:

\(HF^2=AF.FC\)

Tương tự:

\(HE^2=AE.EB\)

\(\Rightarrow AH^2=HE^2+HF^2=AE.EB+AF.FC\) (đpcm)

Nguyễn Việt Lâm
22 tháng 10 2021 lúc 18:05

undefined