ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2=BD.BA.CE.CA\)
\(=BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\)
\(\Rightarrow AH^3=BD.CE.BC\)
ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2=BD.BA.CE.CA\)
\(=BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\)
\(\Rightarrow AH^3=BD.CE.BC\)
cho tam giác ABC vuông tại A đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC. C/m
a) \(\dfrac{EB}{FC}\)=\(\left(\dfrac{AB}{AC}\right)^3\)
b) BC.BE.CF = AH3
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
Cho tam giác ABC vuông tại A và có đường cao AH
a) Khi AH = 12cm ; AB = 15cm . Tính AC, BC và số đo
BAH( làm tròn đến độ )
b) Gọi D ; E lần lượt là hình chiếu của H trên AB ; AC .
Chứng minh : HB.HC = AE.AC=AD.AB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
cho tam giác ABC vuông tại A, đường cao AH .Gọi D,E là hình chiếu của H, trên AB và AC . Biết AH =4cm, BC= 10 cm ,diện tích tứ giác ADHE là ?
Cho tam giác ABC vuông tại A , đuờng cao AH . Gọi D và E lần luợt là hình chiếu của H trên AB và AC . Biết AB = 15 cm , BH = 9cm . Tính DE
Cho tam giác ABC vuông tại A,đường cao AH và trung tuyến AM .Gọi D,E lần lượt là hình chiếu của H trên AB,AC.Chứng minh: a)DE²=BH×CH. b)DE vuông góc AM. Mong mọi giúp ạ em đang cần gấp!
Cho tam giác ABC vuông tại A , đường cao AH . Gọi M,N lần lượt là hình chiếu của H lên AB, AC . Chứng minh rằng :
a) AM.AB=AN.AC
b) MB/NC=(AB/AC)^3
c) BC.MB.NC=AH^3