Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC cmr
AH3=BD.CE.BC
Cho tam giác ABC vuông tại A đường cao AH . Gọi E F lần lượt là đường chiếu của h trên AB AC Chứng minh rằng:
a. BC² =3AH²+BE²+CF²
b. \(\dfrac{ }{ }\) AB³/AC³= BE/CF
c. AH³= BC.BE.CF
= BC.HE.HF
c) Chứng minh: \(tan^3C=\dfrac{BE}{CF}\)
cho tam giác vuông ABC có đg cao AH. E,F lần lượt là hình chiếu của H trên AB;AC.
CMR: \(\dfrac{FB}{FC}=\left(\dfrac{AB}{AC}\right)^3\) \(BC\cdot BE\cdot CF=AH^3\)
cho tam giác ABC vuông tại A, đường cao AH. gọi E,F lần lượt là hình chiếu H trên AB,AC.Chứng minh:
a, FB trên FC =AB3 trên AC3
b,BC2= 3AH2 + BE2 +CF2
c,BE. căn CH +CF. căn BH = AH. căn BC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh: AE.AB = AF.AC và \(\widehat{AEF}=\widehat{ABC}\)
b) Đường trung tuyến AI của tam giác ABC cắt EF tại K. Chứng minh rằng \(cos^2B.sinB=\dfrac{KF}{BC}\)
Câu 3: Cho tam giác ABC vuông tại A, kẻ đường cao Ah. Gọi E và F là hình chiếu vuông góc của AB và AC. Chứng minh:
a) AH3= BC.BE.CF
b) tan\(\dfrac{C}{2}\)= \(\dfrac{AB}{AC+BC}\)