tam giác ABH vuông tại H nên áp dụng định lí pytago ta đc:
AH=\(\sqrt{AB^2-BH^2}=\sqrt{15^2-9^9}=12cm\)
tứ giác ADHE có DAE=AEH=HDA=90 nên là hình chữ nhật
=>DE=AH=12cm
tam giác ABH vuông tại H nên áp dụng định lí pytago ta đc:
AH=\(\sqrt{AB^2-BH^2}=\sqrt{15^2-9^9}=12cm\)
tứ giác ADHE có DAE=AEH=HDA=90 nên là hình chữ nhật
=>DE=AH=12cm
1) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 6cm, BC= 10cm
a)Tính BH, AH,\(\dfrac{AD}{AE}\)
b)CM: DE= BC. sinB.cosB
Cho tam giác ABC vuông tại A,đường cao AH và trung tuyến AM .Gọi D,E lần lượt là hình chiếu của H trên AB,AC.Chứng minh: a)DE²=BH×CH. b)DE vuông góc AM. Mong mọi giúp ạ em đang cần gấp!
cho tam giác ABC vuông tại A, đường cao AH .Gọi D,E là hình chiếu của H, trên AB và AC . Biết AH =4cm, BC= 10 cm ,diện tích tứ giác ADHE là ?
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho ∆ABC vuông tại A, đường cao AH. Biết HB=4cm, CH=9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a, Tính DE
b, Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN=1/2BC
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
Cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E là hình chiếu của H lên AB và AC biết AB=6 ,BC =10
a) Tính AD/AE
b) Tính góc ADE
Cho tam giác ABC vuông tại A và có đường cao AH
a) Khi AH = 12cm ; AB = 15cm . Tính AC, BC và số đo
BAH( làm tròn đến độ )
b) Gọi D ; E lần lượt là hình chiếu của H trên AB ; AC .
Chứng minh : HB.HC = AE.AC=AD.AB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB, AC cmr
AH3=BD.CE.BC