Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Bình
Xem chi tiết
Tran Quang
Xem chi tiết
Nguyễn Huy Tú
26 tháng 1 2022 lúc 14:53

a, đk : x > = 0 

Ta có : \(P=\dfrac{x-\sqrt{x}+1}{x+1}=\dfrac{m\sqrt{x}}{x+1}\Rightarrow x-\sqrt{x}+1=m\sqrt{x}\)

\(\Leftrightarrow x-\left(m+1\right)\sqrt{x}+1=0\)

Đặt \(\sqrt{x}=t\)khi đo x = t^2 

\(t^2-\left(m+1\right)t+1=0\)

Để pt có 2 nghiệm pb khi 

\(\Delta=\left(m+1\right)^2-4=m^2+2m-3>0\)

học giỏi nhất web
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2021 lúc 13:46

a) Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

 

quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 4 2023 lúc 16:33

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

Adu vip
Xem chi tiết
Kiêm Hùng
9 tháng 7 2021 lúc 21:28

Ghi lại đề bạn ơi!

 

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 22:01

Ta có: \(m\cdot P=\sqrt{x}-2\)

\(\Leftrightarrow m=\dfrac{x-\sqrt{x}-2}{2\sqrt{x}-1}\)

Để phương trình có hai nghiệm phân biệt thì \(0\le x\ne\dfrac{1}{4}\)

giang thị kim thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 14:49

Mở ảnh

Music Hana
Xem chi tiết
Akai Haruma
13 tháng 5 2021 lúc 0:15

Lời giải:

\(S-m=\frac{x+\sqrt{x}(1-3m)+m}{3\sqrt{x}-1}\)

Để $S-m=0$ có nghiệm thì PT $x+\sqrt{x}(1-3m)+m=0$ có nghiệm không âm và khác $\frac{1}{9}$

Điều này xảy ra khi:

\(\left\{\begin{matrix} \Delta=(1-3m)^2-4m\geq 0\\ \frac{1}{9}+\frac{1}{3}(1-3m)+m\neq 0\\ S=1-3m\geq 0\\ P=m\geq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} (m-1)(9m-1)\geq 0\\ 1-3m\geq 0\\ m\geq 0\end{matrix}\right.\left\{\begin{matrix} m\leq \frac{1}{9}\\ m\geq 0\end{matrix}\right.\)

oooloo
Xem chi tiết