a: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{1-x}\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
c: Để A nguyên thì \(2\sqrt{x}+1\) ⋮\(\sqrt{x}+1\)
=>\(2\sqrt{x}+2-1\) ⋮\(\sqrt{x}+1\)
=>-1⋮\(\sqrt{x}+1\)
=>\(\sqrt{x}+1=1\)
=>x=0(nhận)