ĐKXĐ: \(x>1\)
- Với \(m=0\) thỏa mãn
- Với \(m\ne0\)
\(\Rightarrow m^2\left(x-1\right)+m=x\)
\(\Leftrightarrow\left(m^2-1\right)x=m^2-m\) (1)
Pt đã cho vô nghiệm khi:
TH1: (1) vô nghiệm \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m^2-1=0\\m^2-m\ne0\end{matrix}\right.\) \(\Leftrightarrow m=-1\)
TH2: (1) có nghiệm thỏa mãn \(x\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\x=\dfrac{m^2-m}{m^2-1}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{m}{m+1}-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{1}{m+1}\ge0\end{matrix}\right.\) \(\Leftrightarrow m>-1\)
Vậy pt vô nghiệm khi \(m\ge-1\)