a.
ĐKXĐ: \(-4\le x\le2\)
Đặt \(\sqrt{-x^2-2x+8}=t\ge0\)
Do \(\sqrt{-x^2-2x+8}=\sqrt{-\left(x+1\right)^2+9}\le\sqrt{9}=3\)
\(\Rightarrow0\le t\le3\)
Khi đó pt trở thành:
\(8-t^2-4t-m=0\)
\(\Leftrightarrow m=-t^2-4t+8\) (1)
Xét hàm \(f\left(t\right)=-t^2-4t+8\) trên \(\left[0;3\right]\)
\(-\frac{b}{2a}=-2\notin\left[0;3\right]\) ; \(f\left(0\right)=8\) ; \(f\left(3\right)=-13\)
\(\Rightarrow-13\le f\left(t\right)\le8\) ; \(\forall t\in\left[0;3\right]\)
\(\Rightarrow\left(1\right)\) có nghiệm khi và chỉ khi \(-13\le m\le8\)
b.
ĐKXĐ: \(-3\le x\le1\)
Đặt \(\sqrt{x+3}+\sqrt{1-x}=t\)
\(\Rightarrow t^2=4+2\sqrt{-x^2-2x+3}\Rightarrow-\sqrt{-x^2-2x+3}=\frac{4-t^2}{2}\)
Ta có:
\(\sqrt{x+3}+\sqrt{1-x}\ge\sqrt{x+3+1-x}=2\Rightarrow t\ge2\)
\(\sqrt{x+3}+\sqrt{1-x}\le\sqrt{2\left(x+3+1-x\right)}=2\sqrt{2}\)
\(\Rightarrow2\le t\le2\sqrt{2}\)
Pt đã cho trở thành:
\(2t+\frac{4-t^2}{2}+m-3=0\)
\(\Leftrightarrow\frac{1}{2}t^2-2t+1=m\) (1)
Xét hàm \(f\left(t\right)=\frac{1}{2}t^2-2t+1\) trên \(\left[2;2\sqrt{2}\right]\)
\(-\frac{b}{2a}=2\in\left[2;2\sqrt{2}\right]\) ; \(f\left(2\right)=-1\) ; \(f\left(2\sqrt{2}\right)=5-4\sqrt{2}\)
\(\Rightarrow-1\le f\left(t\right)\le5-4\sqrt{2}\) ; \(\forall t\in\left[2;2\sqrt{2}\right]\)
\(\Leftrightarrow\left(1\right)\) có nghiệm khi và chỉ khi \(-1\le m\le5-4\sqrt{2}\)
Lý thuyết: tìm m để pt đưa về dạng \(f\left(x\right)=m\) có nghiệm trên 1 đoạn \(\left[m;n\right]\) nào đó
- Đầu tiên, chuyển m về 1 vế (gọi là cô lập m), vế còn lại là 1 hàm bậc 2 theo biến x (hoặc biến t) dạng \(f\left(x\right)=ax^2+bx+c\)
- Biện luận được khoảng xác định của x là đoạn \(\left[m;n\right]\) (điều này có thể làm ngay từ đầu)
- Tiến hành tính toán giá trị \(-\frac{b}{2a}\) rồi quan sát xem giá trị này có nằm trên đoạn \(\left[m;n\right]\) kia không (nếu không nằm trên đoạn [m;n] thì bỏ qua, ko cần quan tâm đến nó nữa)
- Tính toán các giá trị \(f\left(m\right)\) ; \(f\left(n\right)\) ; \(f\left(-\frac{b}{2a}\right)\) (chỉ tính toán \(f\left(-\frac{b}{2a}\right)\) nếu \(-\frac{b}{2a}\in\left[m;n\right]\) )
- Lấy 2 giá trị lớn nhất (LN) và nhỏ nhất (NN) trong các giá trị vừa tính toán
Khi đó ta kết luận được pt có nghiệm khi \(NN\le m\le LN\)