Cho hình thang cân ABCD có đáy AB và CD. Gọi I là giao điểm hai đường
chéo AC và BD. Chứng minh tam giác IAB, ICD cân.
mn giúp mình với mình cảm ơnnnn
Cho hình thang cân ABCD với AB//CD. Gọi I là giao
điểm của AC, BD.
(a) Chứng minh rằng các tam giác IAB, ICD cân tại I.
(b) Gọi M, N là trung điểm của AB, CD. Chứng minh
rằng M, I, N thẳng hàng.
a) Xét ΔACD và ΔBDC có
AC=BD
AD=BC
DC chung
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{IDC}=\widehat{ICD}\)
Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)
nên ΔIDC cân tại I
Suy ra: ID=IC
Ta có: AI+IC=AC
BI+DI=BD
mà AC=BD
và ID=IC
nên IA=IB
Mọi người ơi giúp mình bài này với.
Cho hình thang cân ABCD ( AB // CD ; AB < CD ) gọi O là giao điểm của 2 đường chéo AC và BD.
a) Chứng minh: tam giác AOB cân.
b) Chứng minh: OD = OC.
c) Gọi E là giao điểm AD và BC. Chứng minh: OE là trung trực của 2 đáy.
Bài 1: Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia
phân giác của BC · D
Bài 2: Cho hình thang cân ABCD (AB // CD, AB < CD ). Gọi O là giao điểm của AD
và BC; Gọi E là giao điểm của AC và BD. Chứng minh:
a) Tam giác AOB cân tại O;
b) Các tam giác ABD và BAC bằng nhau;
c) EC = ED;
d) OE là trung trực chung của AB và CD.
Bài 3: Cho hình thang cân ABCD (AB // CD) có µ A C 2µ. Tính các góc của hình thang cân
Bài 4: Cho hình thang cân ABCD (AB//CD) có đường chéo BD vuông góc với cạnh bên
BC và đồng thời DB là tia phân giác của ADC.
a) Tính các góc của hình thang cân ABCD.
b) Biết BC = 6 cm, tính chu vi và diện tích của hình thang cân ABCD.
Giúp mình với ngày mai phải nộp r 😥🙏
Cho hình thang ABCD có hai đáy AB = 3 CD = 14 và hai đường chéo AC = 15 BD = 8 lấy điểm E trên tia đối của tia DC sao cho DE = 3 Gọi I là giao điểm của AC và BD
A) Chứng minh tứ giác ABDE là hình bình hành
B) Tính độ dài đoạn thẳng ID
C) Chứng minh tam giác ICD vuông
D) Tính diện tích hình thang ABCD
a: Xét tứ giác ABDE có
AB//DE
AB=DE
=>ABDE là hình bình hành
b: Xét ΔIAB và ΔICD có
góc IAB=góc ICD
góc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IA/IC=IB/ID=AB/CD=3/14
=>IA/3=IC/14=(IA+IC)/(3+14)=15/17
=>IA=45/17cm; IC=210/17cm
c: IB/ID=3/14
=>IB/3=ID/14=(IB+ID)/(3+14)=8/17
=>ID=112/17(cm)
IC=210/17; ID=112/17; CD=14
IC^2+ID^2=(210/17)^2+(112/17)^2=196
CD^2=14^2=196
=>IC^2+ID^2=CD^2
=>ΔICD vuông tại I
d: S ABCD=1/2*AC*BD=1/2*8*15=4*15=60
Cho hình thang ABCD (AB//CD), AC cắt BD tại I
a) Chứng minh tam giác IAB đồng dạng với tam giác ICD
b) Qua I vẽ trung đểm song song 2 đáy cắt AD và BC tại M, N. Chứng minh IM=IN
a. IAB ~ ICD (g.g)
ý b mình k hiểu đề cho lắm
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Tham khảo a làm rồi nha: https://hoc24.vn/cau-hoi/.1904701261424
Cho hình thang cân ABCD có AB // CD và AB < CD. Kẻ đường cao AH, BK của hình thang ABCD (H, K thuộc CD).
1) Chứng minh tam giác ADH bằng tam giác BCK.
2) Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3) Giả sử BK=AB+CD/2. Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân đáy nhỏ AB , đáy lớn CD . góc nhọn hợp bởi hai đáy chéo AC và BD = 60 độ . gọi M , N là hình chiếu của B và C nên AC và BD là trong điểm cạnh BC . chứng minh MNB là tam giác đều .
giúp mình với ạ ( kẻ hình luôn ạ cảm ơn )
Gọi giao điểm của AC và BD là O
Vì ABCD là hình thang cân nên tam giác AOB cân tại O mà \(\widehat{AOB}=60^0\Rightarrow\) tam giác AOB đều, ta giác COD đều
Mặt khác:
BM là đường cao của tam giác AOB nên BM cũng là trung tuyến \(\Rightarrow\) MA=MO
CN là đường cao của tam giác COD nên cn cũng là trung tuyến\(\Rightarrow\) NO=ND
Tam giác AOD có: MA=MO, NO=ND \(\Rightarrow\)\(MN=\frac{AD}{2}\)
Tam giác BMC vuông tại M có MP là trung tuyến nên \(MP=\frac{BC}{2}=\frac{AD}{2}\)
Tam giác BNC vuông tại N có NP là trung tuyến nên \(NP=\frac{BC}{2}=\frac{AD}{2}\)
Do đó: MN=NP=MP
ọi giao điểm của AC và BD là O
Vì ABCD là hình thang cân nên tam giác AOB cân tại O mà ˆAOB=600⇒AOB^=600⇒ tam giác AOB đều, ta giác COD đều
Mặt khác:
BM là đường cao của tam giác AOB nên BM cũng là trung tuyến ⇒⇒ MA=MO
CN là đường cao của tam giác COD nên cn cũng là trung tuyến⇒⇒ NO=ND
Tam giác AOD có: MA=MO, NO=ND ⇒⇒MN=AD2MN=AD2
Tam giác BMC vuông tại M có MP là trung tuyến nên \(\(MP=\frac{BC}{2}=\frac{AD}{2}\)\)
Tam giác BNC vuông tại N có NP là trung tuyến nên \(\(NP=\frac{BC}{2}=\frac{AD}{2}\)\)
Vậy => MN=NP=MP