Xét ΔADC và ΔBCD có
CD chung
AD=BC(ABCD là hình thang cân)
AC=BD(ABCD là hình thang cân)
Do đó: ΔADC=ΔBCD(c-c-c)
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)(hai góc tương ứng)
hay \(\widehat{IDC}=\widehat{ICD}\)
Xét ΔIDC có \(\widehat{IDC}=\widehat{ICD}\)(cmt)
nên ΔIDC cân tại I(Định lí đảo của tam giác cân)
Ta có: \(\widehat{IAB}=\widehat{ICD}\)(hai góc so le trong, AB//CD)
\(\widehat{IBA}=\widehat{IDC}\)(hai góc so le trong, AB//CD)
mà \(\widehat{ICD}=\widehat{IDC}\)(cmt)
nên \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIAB cân tại I(Định lí đảo của tam giác cân)