Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Hải Yến
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
Phùng Minh Quân
16 tháng 11 2018 lúc 17:57

\(\frac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}=\frac{a^4}{\left[\left(a-b\right)\left(a+b\right)+c^2\right]\left[\left(a-c\right)\left(a+c\right)+b^2\right]}\)

\(\frac{a^4}{\left[-c\left(a-b\right)+c^2\right]\left[-b\left(a-c\right)+b^2\right]}=\frac{a^4}{4bc\left(b+c\right)^2}=\frac{a^4}{4a^2bc}\)

Tương tự với 2 phân thức còn lại, ta cũng có : \(\frac{b^4}{b^4-\left(c^2-a^2\right)^2}=\frac{b^4}{4ab^2c};\frac{c^4}{c^4-\left(a^2-b^2\right)^2}=\frac{c^4}{4abc^2}\)

\(VT=\frac{a^4}{4a^2bc}+\frac{b^4}{4ab^2c}+\frac{c^4}{4abc^2}=\frac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}=\frac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\)

\(VT=\frac{a^3+b^3+c^3}{4abc}\)

Mà \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) ( tự cm ) 

\(\Rightarrow\)\(VT=\frac{3abc}{4abc}=\frac{3}{4}\) ( đpcm ) 

Chúc bạn học tốt ~ 

Nguyễn Võ Thảo VY
Xem chi tiết
Nguyễn Thanh Hằng
16 tháng 11 2018 lúc 12:24

Đặt :

\(A=\)\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)}\)

\(=\dfrac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}+\dfrac{b^4}{\left(b^2-c^2+a^2\right)\left(b^2+c^2-a^2\right)}+\dfrac{c^4}{\left(c^2-a^2+b^2\right)\left(c^2+a^2-b^2\right)}\)

Ta có : \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2=c^2\)

\(\Leftrightarrow a^2+b^2-c^2=-2ab\)

Tương tự :

+) \(a^2-b^2+c^2=-2ac\)

+) \(b^2+c^2-a^2=-2bc\)

\(\Leftrightarrow A=\dfrac{a^4}{\left(-2ac\right)\left(-2ab\right)}+\dfrac{b^4}{\left(-2ab\right)\left(-2bc\right)}+\dfrac{c^4}{\left(-2bc\right)\left(-2ac\right)}\)

\(=\dfrac{a^4}{4a^2bc}+\dfrac{b^4}{4ab^2c}+\dfrac{c^4}{4abc^2}\)

\(=\dfrac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}\)

\(=\dfrac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\) (cậu tự chứng minh \(a^3+b^3+c^3=3abc\) nhé)

\(=\dfrac{3a^2b^2c^2}{4a^2b^2c^2}\)

\(=\dfrac{3}{4}\)

Vậy..

Lê Đức Anh
Xem chi tiết
Bui Huyen
14 tháng 3 2019 lúc 21:38

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

Lê Đức Anh
14 tháng 3 2019 lúc 21:45

Thank you

Lê Nhật Khôi
14 tháng 3 2019 lúc 22:10

Ta có:

\(a+b+c=6\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=36\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow ab+bc+ac=18\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2abc\left(a+b+c\right)=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2=324\)

Có: \(a^2+b^2+c^2=0\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=0\)

\(\Leftrightarrow a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]=0\)

\(\Leftrightarrow P=a^4+b^4+c^4=-648\)

Như thế có thể kết luận đề sai 

Do tất cả đề lớn hơn bằng 0

Mình trình bày cách giải ra đề lần sau đề đúng để bn có hướng làm 

Đậu Đình Kiên
Xem chi tiết
emily
22 tháng 7 2018 lúc 8:33

cho bạn nè: https://olm.vn/hoi-dap/question/108981.html

vào đó mà xem nha...

oOo Sát thủ bóng đêm oOo
22 tháng 7 2018 lúc 8:46

Từ a+b+c=0 có b+c =-a 
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2 
hay b^2 + c^2 -a^2 = -2bc 

Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2 
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2 
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2 
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2): Đpcm

ST
22 tháng 7 2018 lúc 8:53

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\) (vì a+b+c=0)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\) (đpcm)

lương hoàng châu
Xem chi tiết
pham hong thai
27 tháng 3 2016 lúc 13:41

mình mới học lớp 6 thôi

Đặng Minh Trí
Xem chi tiết
Gia Huy
5 tháng 7 2023 lúc 14:09

Theo đề có \(a+b+c=0 \Rightarrow (a+b+c)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow ab+bc+ca=\frac{0-2}{2} = -1\) (Vì \(a^2+b^2+c^2=2\))

\(\Rightarrow (ab+bc+ca)^2=1 \)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2bc^2a+2ca^2b=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2 = 1\) (vì \(a+b+c=0\))

Mặt khác từ `a^2+b^2+c^2=2`

`\Rightarrow(a^2+b^2+c^2)^2=2^2`

`\Rightarrowa^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=4`

`\Rightarrowa^4+b^4+c^4+2.1=4`

`\Rightarrowa^4+b^4+c^4=4-2=2`

Yeutoanhoc
Xem chi tiết
Trần Minh Hoàng
1 tháng 6 2021 lúc 6:36

b) Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right)\ge\left(a^2+b^2+c^2\right)^3\)

Lại có \(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\le2a^2\left(b^2+c^2\right)+2b^2\left(c^2+a^2\right)+2c^2\left(a^2+b^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\).

Ta chỉ cần chứng minh: \(\dfrac{\sqrt[4]{27\left(a^4+b^4+c^4\right)}}{2}\le\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\Leftrightarrow27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^2+b^2+c^2\right)^3\).

Áp dụng bđt AM - GM ta có \(27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\right)=\left(a^2+b^2+c^2\right)^2\).

Vậy ta có đpcm.

Trần Minh Hoàng
1 tháng 6 2021 lúc 6:51

a) Câu này cũng tương tự: Áp dụng bđt Holder ta có:

\(\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\ge\left(a^2+b^2+c^2\right)^3\).

Đến đây làm tương tự là ok

Nguyễn Thị Thanh Thảo
Xem chi tiết
TN
Xem chi tiết