Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
layla Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 7 2021 lúc 20:22

3.

Do \(sin\left(x+k2\pi\right)=sinx\Rightarrow sin\left(x+2020\pi\right)=sinx\)

\(sin\left(\dfrac{\pi}{2}+x\right)=cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}-x\right)=cos\left(-x\right)=cosx\)

\(A=\dfrac{sinx+sin3x+sin5x}{cosx+cos3x+cos5x}=\dfrac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}\)

\(=\dfrac{2sin3x.cosx+sin3x}{2cos3x.cosx+cos3x}=\dfrac{sin3x\left(2cosx+1\right)}{cos3x\left(2cosx+1\right)}\)

\(=\dfrac{sin3x}{cos3x}=tan3x\)

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 20:29

4.

a.

\(\overrightarrow{CB}=\left(2;-2\right)=2\left(1;-1\right)\)

Do đường thẳng d vuông góc BC nên nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình đường thẳng d đi qua \(A\left(-1;2\right)\) và có 1 vtpt là \(\left(1;-1\right)\) là:

\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)

b.

Gọi \(I\left(a;b\right)\) là tâm đường tròn, ta có \(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a+1;b-2\right)\\\overrightarrow{BI}=\left(a-3;b-2\right)\\\overrightarrow{CI}=\left(a-1;b-4\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a+1\right)^2+\left(b-2\right)^2\\BI^2=\left(a-3\right)^2+\left(b-2\right)^2\\CI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

Do I là tâm đường tròn qua 3 điểm nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-2\right)^2=\left(a-3\right)^2+\left(b-2\right)^2\\\left(a+1\right)^2+\left(b-2\right)^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a=8\\4a+4b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow I\left(1;2\right)\)

\(\overrightarrow{AI}=\left(2;0\right)\Rightarrow R=AI=\sqrt{2^2+0^2}=2\)

Pt đường tròn có dạng:

\(\left(x-1\right)^2+\left(y-2\right)^2=4\) 

Nguyễn Nhung
Xem chi tiết
Yeutoanhoc
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 6 2021 lúc 20:24

Mình bận 1 xíu, nhưng nếu học giới hạn thì bạn cần nắm rõ các khái niệm và các dạng vô định cũng như không phải vô định đã

Giới hạn này không phải là 1 giới hạn vô định (mẫu số xác định và hữu hạn), khi gặp giới hạn kiểu này thì chỉ có 1 cách: thay số tính trực tiếp như lớp 1 là được:

\(\lim\limits_{x\rightarrow\dfrac{\pi}{2}}\dfrac{sin\left(x-\dfrac{\pi}{4}\right)}{x}=\dfrac{sin\left(\dfrac{\pi}{2}-\dfrac{\pi}{4}\right)}{\dfrac{\pi}{2}}=\dfrac{\sqrt{2}}{\pi}\)

 

hoàng tử gió 2k7
Xem chi tiết
Ami Mizuno
6 tháng 2 2022 lúc 10:46

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{2}{3}}{y}+\dfrac{\dfrac{8}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{\dfrac{2}{3}}{x}+\dfrac{\dfrac{14}{9}}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\left(1\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(2\right)\end{matrix}\right.\)

Nhân cả hai vế (1) cho \(\dfrac{2}{3}\) ta có: \(\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{5.2}{6.3}\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3x}+\dfrac{2}{3y}=\dfrac{10}{18}\left(3\right)\\\dfrac{2}{3x}+\dfrac{14}{9y}=1\left(4\right)\end{matrix}\right.\)

Lấy (4) trừ (3) ta có:

\(\dfrac{14}{9y}-\dfrac{2}{3y}=1-\dfrac{10}{18}\)\(\Leftrightarrow\dfrac{8}{9y}=\dfrac{4}{9}\)\(\Leftrightarrow y=2\Rightarrow x=\dfrac{1}{\dfrac{5}{6}-\dfrac{1}{2}}=3\)

Đỗ Thị Minh Ngọc
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
14 tháng 4 2022 lúc 20:58

a) \(m_{NaCl}=\dfrac{8.200}{100}=16\left(g\right)\)

b) \(m_{HCl}=\dfrac{14.250}{100}=35\left(g\right)\)

c) \(m_{H_2SO_4}=\dfrac{19,6.300}{100}=58,8\left(g\right)\)

Trần Đức Huy
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2022 lúc 12:33

Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?

Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)

Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)

Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)

Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)

Tam giác vuông \(IJO\)\(IJ^2=OI^2-JO^2\)

\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)

Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)

Do O là trung điểm BC nên \(IO\perp BC\)

\(\Rightarrow OI^2+OC^2=IC^2\) 

Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)

Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)

\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)

Thế vào (3):

\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)

Nguyễn Việt Lâm
7 tháng 2 2022 lúc 12:14

Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c

oki pạn
7 tháng 2 2022 lúc 12:34

câu C.

Do Tâm đường tròn ngoại tiếp tam giác thuộc đường thẳng đó nên gọi tâm đó là I 

=> I là giao điểm của đường thẳng qua M vuông góc AO, và trung trực của BC

Gọi điểm N là giao điểm cả AO và BM

=> tam giác AMO vuông tại M, MN vuông góc AO => \(AM^2\) = AN.AO

AK cắt BM tại G => AN.AO = AG.AK

Chứng minh tứ giác nội tiếp và tam giác đồng dạng  => AG.AK = 2.BN.BI = 2\(BO^2\)

=> \(AM^2=2BO^2=2BC\)

⇒ BC=\(\sqrt{2}\) AM(đpcm) 

 

Đỗ Thị Minh Ngọc
Xem chi tiết
Kudo Shinichi
14 tháng 4 2022 lúc 20:40

\(a,m_{dd}=\dfrac{5}{12\%}=\dfrac{125}{3}\left(g\right)\\ b,m_{dd}=\dfrac{4}{7,3\%}=\dfrac{4000}{73}\left(g\right)\\ c,m_{NaOH}=0,5.40=20\left(g\right)\\ m_{dd}=\dfrac{20}{10\%}=200\left(g\right)\)

Nguyễn Quang Minh
14 tháng 4 2022 lúc 20:46

\(m_{\text{dd}}=\dfrac{5.100}{12}=41,6\left(g\right)\\ m_{\text{dd}}=\dfrac{4.100}{7,3}=\dfrac{4000}{73}\left(g\right)\\ m_{\text{dd}}=\dfrac{\left(0,5.40\right).100}{10}=200\left(g\right)\)

Nguyễn Hoàng Minh
5 tháng 11 2021 lúc 21:17

\(=\dfrac{7-4\sqrt{3}+7+4\sqrt{3}}{1}=14\)

Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 21:17

\(=7-4\sqrt{3}+7+4\sqrt{3}=14\)

Nguyễn Hoàng Ngọc Linh
Xem chi tiết