tìm x biết:
\(\left(x-4\right)\left(x^2+4x+16\right)-x\left(x^2-6\right)=2\)
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
Bài 3.
a) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
b)\(\left(x^2+x\right)\left(x^2+x+1\right)-6\)
c)\(\left(x^2-4x\right)^2-8\left(x-4x\right)+15\)
a)
\((x+2)(x+4)(x+6)(x+8)+16\)
\(=[(x+2)(x+8)][(x+4)(x+6)]+16\)
\(=(x^2+10x+16)(x^2+10x+24)+16\)
\(=a(a+8)+16\) (Đặt \(x^2+10x+16=a\) )
\(=a^2+2.4.a+4^2=(a+4)^2\)
\(=(x^2+10x+16+4)^2\)
\(=(x^2+10x+20)^2\)
b) \((x^2+x)(x^2+x+1)-6\)
\(=(x^2+x)^2+(x^2+x)-6\)
\(=(x^2+x)^2-2(x^2+x)+3(x^2+x)-6\)
\(=(x^2+x)(x^2+x-2)+3(x^2+x-2)\)
\(=(x^2+x-2)(x^2+x+3)\)
\(=(x^2-x+2x-2)(x^2+x+3)\)
\(=[x(x-1)+2(x-1)](x^2+x+3)\)
\(=(x-1)(x+2)(x^2+x+3)\)
c)
\((x^2-4x)^2-8(x^2-4x)+15\)
\(=(x^2-4x)^2-3(x^2-4x)-5(x^2-4x)+15\)
\(=(x^2-4x)(x^2-4x-3)-5(x^2-4x-3)\)
\(=(x^2-4x-3)(x^2-4x-5)\)
\(=(x^2-4x-3)(x^2+x-5x-5)\)
\(=(x^2-4x-3)[x(x+1)-5(x+1)]=(x^2-4x-3)(x+1)(x-5)\)
Tìm x, biết :
a/ \(\dfrac{1}{3}x\left(x^2-4\right)=0\)
b/ \(x\left(x+5\right)=x+5\)
c/ \(x^3-\dfrac{1}{9}x=0\)
3)\(^2-\left(x+5\right)^2=0\)
e/ \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
f/ \(x\left(2x-3\right)-6+4x=0\)
g/ \(2\left(3x-2\right)^2-9x^2+4=0\)
h/ \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
i/ \(4x^2+9x+5=0\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)
Vế trái: 4/(x+2).(x+6)+7/(x+6).(x+13)
<=>1/x+2 -1/x+6 +1/x+6 -1/x+13
<=>1/x+2-1/x+13
=> 1/x+2-1/x+13=2x+1/(x+2).(x+16) -3/(x+13).(x+16)
<=>1/x+2 - 1/x+13 + 1/x+13 - 1/x+16=2x+1/(x+2).(x+16)
<=>1/x+2 - 1/x+16=2x+1/(x+2).(x+16)
<=> 14/(x+2).(x+16)= 2x+1/(x+2).(x+16)
<=> 2x+1=14
<=> 2x=14-1
<=> 2x=13
<=> x=13:2
<=> x=13/2
Vậy x=13/2
Chắc là vầy. Mk cug ko chắc nữa
a) \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
b) \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
c) \(x\left(x+3\right)^3-\dfrac{x}{4}\left(x+3\right)=0\)
a) Ta có: \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{3x-16x-20}{12}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\cdot\left(-13x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\-13x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\-13x=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\dfrac{-20}{13}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;-4;\dfrac{-20}{13}\right\}\)
b) Ta có: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;\dfrac{-4}{3}\right\}\)
c) Ta có: \(x\left(x+3\right)^3-\dfrac{x}{4}\cdot\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot\left[x\left(x+3\right)^2-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x^2+6x+9\right)-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\dfrac{1}{4}x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot x\cdot\left(x^2+6x+\dfrac{35}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x^2+6x+9-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left[\left(x+3\right)^2-\dfrac{1}{4}\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+3-\dfrac{1}{2}\right)\left(x+3+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+\dfrac{5}{2}\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3;-\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
Tìm x biết: \(\frac{4}{\left(x+2\right).\left(x+6\right)}+\frac{7}{\left(x+6\right).\left(x+13\right)}=\frac{2x+1}{\left(x+2\right).\left(x+16\right)}-\frac{3}{\left(x+13\right).\left(x+16\right)}\)
Vế trái: 4/(x+2).(x+6)+7/(x+6).(x+13)
<=>1/x+2 -1/x+6 +1/x+6 -1/x+13
<=>1/x+2-1/x+13
=> 1/x+2-1/x+13=2x+1/(x+2).(x+16) -3/(x+13).(x+16)
<=>1/x+2 - 1/x+13 + 1/x+13 - 1/x+16=2x+1/(x+2).(x+16)
<=>1/x+2 - 1/x+16=2x+1/(x+2).(x+16)
<=> 14/(x+2).(x+16)= 2x+1/(x+2).(x+16)
<=> 2x+1=14
<=> 2x=14-1
<=> 2x=13
<=> x=13:2
<=> x=13/2
Vậy x=13/2
Chúc bạn học tốt
Tìm x:
b, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
c, \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
d, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(b,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\) \(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)\(\Leftrightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)
\(c,\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6x^2+12x+6-49=0\)\(\Leftrightarrow24x=-13\Rightarrow x=-\dfrac{13}{24}\)
\(d,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=23\Rightarrow x=-\dfrac{23}{2}\)
Bài 3: Tìm x biết:
1, \(4x^2-36=0\)
2, \(\left(x-1\right)^2+x\left(4-x\right)=11\)
3, \(\left(x-5\right)^2-x.\left(x+2\right)=5\)
4, \(x\left(x+4\right)-x^2-6x=10\)
1: Ta có: \(4x^2-36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)
\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)
\(\Leftrightarrow2x=10\)
hay x=5
tìm x
(x-4)\(\left(x^2+4x+16\right)-x\left(x^2-6\right)\))=2
GIÚP MÌNH NHA
\(\left(x-4\right)\left(x^2+4x+16\right)-x\left(x^2-6\right)=2\)
\(\Rightarrow x^3-64-x^3+6x=2\)
\(\Rightarrow-64+6x=2\)
\(\Rightarrow6x=66\Rightarrow x=11\)