Tính
\(\left(-2\right)^2.3-\left(1^{10}+8\right):\left(-3\right)^2\)
Tính giá trị của biểu thức:
a) \(9 234:\left[3.3.\left(1+8^3\right)\right];\)
b) \(76-\left\{2.\left[2.5^2-\left(31-2.3\right)\right]\right\}+3.25.\)
a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]
= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2
b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25
= 76 - {2 . [2 . 25 - (31 - 6)]} + 75
= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 101
a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]
= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2
b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25
= 76 - {2 . [2 . 25 - (31 - 6)]} + 75
= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 10
Tính giá trị của biểu thức:
a) \(32-6.\left(8-2^3\right)+18;\)
b) \(\left(3.5-9\right)^3.\left(1+2.3\right)^2+4^2.\)
a) 32 - 6 . (8 - 23) + 18 = 32 - 6 . (8 - 8) + 18
= 32 - 6 . 0 + 18 = 32 + 18 = 50
b) (3 . 5 - 9)3 . (1 + 2 . 3)2 + 42
= (15 - 9)3 . (1 + 6)2 + 42
= 63 . 72 + 42 = 216 . 49 + 16 = 10 584 + 16 = 10 600
a) 32 - 6 . (8 - 23) + 18 = 32 - 6 . (8 - 8) + 18
= 32 - 6 . 0 + 18 = 32 + 18 = 50
b) (3 . 5 - 9)3 . (1 + 2 . 3)2 + 42
= (15 - 9)3 . (1 + 6)2 + 42
= 63 . 72 + 42 = 216 . 49 + 16 = 10 584 + 16 = 10 600
Dùng quy nạp nha
1. CMR: ∀n thì
a) \(A=10^n+72-1\)⋮81
b) \(B=2002^n-138n-1\)⋮207
2.CMR: ∀n∈N
a) \(1.2+2.3+3.4+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{8}\)
b) \(1^3+2^3+3^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
\(1,\)
\(a,\) Sửa: \(A=10^n+72n-1⋮81\)
Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)
Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)
Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)
\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)
Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)
Theo pp quy nạp
\(\Rightarrow A⋮81\)
\(b,B=2002^n-138n-1⋮207\)
Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)
Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)
Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)
\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)
Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)
Nên theo pp quy nạp \(B⋮207,\forall n\)
\(2,\)
\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)
Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)
Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)
Với \(n=k+1\)
Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy, ta có:
\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Theo pp quy nạp ta có đpcm
\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)
Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)
Với \(n=k+1\)
Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy, ta có
\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Theo pp quy nạp ta được đpcm
Thực hiện phép tính
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\left(ĐA:A=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\right)\)
Gợi ý : Phân tích hết ra thành tích các thừa số nguyên tố rồi đặt cái chung ra ngoài
-> rút gọn
-> kết quả
P/S : bài này cx ko dài lắm nhưg lười ^^
Tìm x \(3^3.x^2-2^4.x^2=8^2.5-4^2.3^2\)
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2.2^2=4^2.3\)
`@` `\text {Ans}`
`\downarrow`
`3^3 * x^2 - 2^4 * x^2 = 8^2 * 5 - 4^2 * 3^2`
`=> x^2 . (3^3 - 2^4) = 2^6 . 5 - 2^4 . 3^2`
`=> x^2 . 11 = 2^4 . (2^2 . 5 - 3^2)`
`=> x^2 . 11 = 2^4 . 11`
`=> x^2 . 11 - 2^4 . 11 = 0`
`=> 11 . (x^2 - 16) = 0`
`=> x^2 - 16 = 0`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = `\(\pm4\)
Vậy, `x \in`\(\left\{4;-4\right\}\)
_____
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2\cdot2^2=4^2\cdot3\)
`=>`\(\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+\left(3\cdot2\right)^2=48\)
`=>`\(\dfrac{23}{108}\cdot x+6^2=48\)
`=>`\(\dfrac{23}{108}x=48-6^2\)
`=>`\(\dfrac{23}{108}x=48-36\)
`=>`\(\dfrac{23}{108}x=12\)
`=>`\(x=\dfrac{1296}{23}\)
Vậy, `x = `\(\dfrac{1296}{23}\)
\(3^3.x^2-2^4.x^2=8^2.5-4^3.3^2\)
\(\Leftrightarrow x^2\left(27-16\right)=2^6.5-2^6.9\)
\(\Leftrightarrow11x^2=2^6.\left(5-9\right)=-4.2^6=-2^8\)
\(\Leftrightarrow x^2=-\dfrac{2^6}{11}< 0\)
\(\Rightarrow x\in\varnothing\)
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2.2^2=4^2.3\)
\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+36=48\)
\(\Leftrightarrow\dfrac{23}{108}x=12\Leftrightarrow x=\dfrac{12.108}{23}=\dfrac{1296}{23}\)
a) \(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
b) \(\frac{x-2018}{2}+\frac{x-2020}{4}=\frac{x-2040}{8}+\frac{x-2030}{14}\)
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
Mình làm tiếp câu b nha !
b, Bài giải
\(\frac{x-2018}{2}+\frac{x-2020}{4}=\frac{x-2040}{8}+\frac{x-2030}{14}\)
\(\left(\frac{x-2018}{2}+1\right)+\left(\frac{x-2020}{4}+1\right)=\left(\frac{x-2040}{8}+1\right)+\left(\frac{x-2030}{14}+1\right)\)
\(\frac{x-2016}{2}+\frac{x-2016}{4}=\frac{x-2032}{8}+\frac{x-2016}{14}\)
\(\left(x-2016\right)\left(\frac{1}{2}+\frac{1}{4}\right)=\frac{x-2016}{8}-2+\frac{x-2016}{14}\)
\(\left(x-2016\right)\cdot\frac{3}{4}=\left(x-2016\right)\left(\frac{1}{8}+\frac{1}{14}\right)-2\)
\(\left(x-2016\right)\cdot\frac{3}{4}=\left(x-2016\right)\cdot\frac{11}{56}-2\)
\(\left(x-2016\right)\cdot\frac{3}{4}-\left(x-2016\right)\cdot\frac{11}{56}=-2\)
\(\left(x-2016\right)\left(\frac{3}{4}-\frac{11}{56}\right)=-2\)
\(\left(x-2016\right)\cdot\frac{31}{56}=-2\)
\(x-2016=-2\text{ : }\frac{31}{56}\)
\(x-2016=-\frac{112}{31}\)
\(x=-\frac{112}{31}+2016\)
\(x=\frac{62384}{31}\)
thực hiên phép tính :
a, \(\left(3^2\right)^2-\left(2^3\right)^2-\left(-5^2\right)^2\)
b, \(2^3+3.\left(-\dfrac{1}{2}\right)^0-\left(\dfrac{1}{2}\right)^2.4+\left(\left(-2\right)^2:\dfrac{1}{2}\right):8\)
c, \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)
d, \(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(a, \)\(\left(3^2\right)^2-\left(2^3\right)^2-\left(-5^2\right)^2=9^2-8^2-10^2\)
= \(81-64-100\)
\(=-83\)
\(b,\)\(2^3+3.\left(-\dfrac{1}{2}\right)^0-\left(\dfrac{1}{2}\right)^2.4+\left(\left(-2\right)^2:\dfrac{1}{2}\right):8=8+3.1-\dfrac{1}{4}.4+\left(4:\dfrac{1}{2}\right):8\) \(=8+3-1+8:8\)
\(=8+3-1+1\)
\(=11\)
1.Tính:a,\(\left(-7\right)-\left[\left(-19\right)+\left(+21\right)\right].\left(-3\right)-\left[\left(+32\right)+\left(-7\right)\right]\)
b,\((-2)^2.3-(1^{10}+8):\left(-3\right)^2\)
Giúp mình với đang cần gấp lắm nhanh mình tick
\(a,-7-\left[\left(-19\right)+\left(21\right)\right].\left(-3\right)-\left[\left(32\right)+\left(-7\right)\right]\)
\(=-7-\left[21-19\right].\left(-3\right)-\left[32-7\right]\)
\(=-7-2.\left(-3\right)-25\)
\(=-7+6-25=-26\)
\(b,\left(-2\right)^2.3-\left(1^{10}+8\right):\left(-3\right)^2\)
\(=4.3-9:9\)
\(=12-1=11\)
Tính giá trị của biểu thức:
1)\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^43^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
2) CHo x , y , z khác 0 và x-y-z=0 Tính \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{z}\right)\left(1+\frac{y}{z}\right)\)