Chứng minh các số sau là số nguyên tố cùng nhau với n \(\in\)N
b, 2n + 3 và 4n + 8
Chứng minh với mọi số n, các số sau là nguyên tố cùng nhau
a, 7n+10 và 5n+7
b, 2n+3 và 4n+8
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1
còn n+1-n=1 nên (n,n+1)=1
Chứng minh rằng với mọi số tự nhiên n thì các số sau nguyên tố cùng nhau:
a) 2 n + 3 v à 4 n + 8
b) 2 n + 5 v à 3 n + 7
c) 7 n + 10 v à 5 n + 7
chứng minh rằng các cặp số sau nguyên tố cùng nhau với mọi STN n:
2n+1 và 2n+3
2n+3 và 4n+8
7n+8 và 6n+7
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau :
a) 7n + 10 và 5n + 7
b) 2n + 3 và 4n + 8
a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d
=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d
=>35n+50 chia hết cho d; 35n+49 chia hết cho d
=>(35n+50)-(35n+49) chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n
b) Gọi m là ƯCLN(2n+3;4n+8) => 2n+3 chia hết cho m;4n+8 chia hết cho m
=>2(2n+3) chia hết cho m => 4n+6 chia hết cho m
=>(4n+8)-(4n+6) chia hết cho m
=>2 chia hết cho m
=>m thuộc {1;2}
2n+3 là số lẻ => 2n+3 không chia hết cho 2 => m khác 2
=>m=1
=>đpcm
a) 7n + 10 và 5n + 7
Gọi UCLN (7n + 10;5n + 7) = d
7n + 10 = 35n + 50
5n + 7 = 35n + 49
Ta có:UCLN (35n + 50;35n + 49) = d
UCLN (50 ; 49) = d : d = 1
Vậy 7n + 10 và 5n + 7 là số nguyên tố trùng nhau (ĐPCM)
b) 2n + 3 và 4n + 8
Gọi UCLN (2n + 3;4n + 8) là d
2n + 3
4n + 8 = 2n + 4
Ta có: UCLN (2n + 3;2n + 4)
UCLN (3 ; 4) = d : d = 1
Vậy 2n + 3 và 4n + 8 là hai số nguyên tố trùng nhau (ĐPCM)
Chứng minh răng với mọi số tự nhiên n, các số sau là 2 số nguyên tố cùng nhau:
a) 7n+10 và 5n+7
b) 2n+3 và 4n+8
a. Gọi d là ƯC của 7n+10 và 5n+7 ta có:
7n+10 chia hết cho d suy ra 35n+50 chia hết cho d
5n+7 chia hết cho d suy ra 35n+49 chia hết d
suy ra (35n+50)-(35n+49) chia hết d
suy ra 1 chia hết d
suy ra d=1
suy ra 7n+10 và 5n+7 nguyên tố cùng nhau
b tương tự như a
ƯC(2n+3,4n+8)=d
2n+3 chia hết d
4n+8 chia hết d suy ra 2n+4 chia hết d
suy ra (2n+4)-(2n+3) chia hết d
suy ra 1 chia hết d
suy ra d=1
suy ra 2n+3 và 4n+8 nguyên tố cùng nhau
a) 7n+10 và 5n+7
Gọi d là ƯCLN ( 7n+10,5n+7)
=> 7n+10 chia hết cho d
5n+7 chia hết cho d
=> 5(7n+10) chia hết cho d
7(5n+7) chia hết cho d
=> 5(7n+10) - 7(5n+7) chia hết cho d
=> 35n + 50 - 35n+49 chia hết cho d
=>1 chia hết cho d
=> d=1
Vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
Mik mới giải ra câu a) không biết có đúng không.
Các bạn giải câu b) cho mik nhé ^_^
2n + 3 va 4n + 8 la so nguyen to cung nhau.
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau :
a) 7n + 10 và 5n + 7 ;
b) 2n + 3 và 4n + 8.
a) Gọi d > 0 \(\in\) ƯC(7n+10;5n+7)
\(\Rightarrow\) d \(\in\) Ư [5.(7n+10) = 35n +50]
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) - (35n +49) =1
\(\Rightarrow\) d là ước số của 1 \(\Rightarrow\) d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
b) Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
\(\Rightarrow\) d \(\in\) Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
\(\Rightarrow\) d \(\in\) Ư(2) \(\Rightarrow\) d \(\in\) {1,2}
d = 2 không là ước số của số lẻ 2n+3 \(\Rightarrow\) d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
Vây : 2n + 3 va 4n + 8 nguyên tố cùng nhau
Với n là số tự nhiên. Chứng minh các cặp số sau nguyên tố cùng nhau
a) 2n + 3 và 3n + 4
b) 3n + 4 và 4n + 5
a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
a) Gọi d là UCLN (2n+3;3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
Vậy 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
b) Gọi d là UCLN(3n+4;4n+5)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\4n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12n+16⋮d\\12n+15⋮d\end{matrix}\right.\)
\(\Rightarrow12n+16-12n-15⋮d\Rightarrow1⋮d\)
Vậy 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n hai số 2n+ 3 và 4n + 8 là hai số nguyên tố cùng nhau
Giả sử: \(UCLN\left(2n+3;4n+8\right)=d\)
=> \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
=> \(2⋮d\) => \(\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
Có 2n+3 là số lẻ => \(2n+3⋮̸2\)
=> d = 1
=> đpcm