a) Gọi d=(2n+3; 3n+4)
Ta có: 2n+3 và 3n+4 chia hết cho d
--> 6n+9 và 6n+8 chia hết cho d
--> (6n+9)-(6n+8) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n+3 và 3n+4 nguyên tố cùng nhau
a: Gọi d là UCLN của 2n+3 và 3n+4
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\Leftrightarrow d=1\)
=> UCLN(2n+3;3n+4)=1
hay 2n+3;3n+4 là hai số nguyên tố cùng nhau
a) Gọi d là UCLN (2n+3;3n+4)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)
\(\Rightarrow6n+9-6n-8⋮d\Rightarrow1⋮d\)
Vậy 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
b) Gọi d là UCLN(3n+4;4n+5)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\4n+5⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12n+16⋮d\\12n+15⋮d\end{matrix}\right.\)
\(\Rightarrow12n+16-12n-15⋮d\Rightarrow1⋮d\)
Vậy 3n+4 và 4n+5 là 2 số nguyên tố cùng nhau
a) Gọi d=(3n+4; 4n+5)
Ta có: 3n+4 và 4n+5 chia hết cho d
--> 12n+16 và 12n+15 chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 3n+4 và 4n+5 nguyên tố cùng nhau