\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{9+6-2.3.\sqrt{6}}+\sqrt{9+24-2.3.2\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
\(=3-\sqrt{6}-3+2\sqrt{6}=\sqrt{6}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{15-2.3\sqrt{6}}+\sqrt{33-2.6\sqrt{6}}\)
\(=\sqrt{15-2\sqrt{54}}+\sqrt{33-2\sqrt{216}}\)
\(=\sqrt{9-2\sqrt{6}\sqrt{9}+6}+\sqrt{24-2\sqrt{24}\sqrt{9}+\sqrt{9}}\)
\(=3-\sqrt{6}+\sqrt{24}-3\)
\(=\sqrt{24}-\sqrt{6}\)
\(=\sqrt{6}\)
Rút gọn biểu thức
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Tính
G.\(\sqrt{7-2\sqrt{6}}\)
H.\(\sqrt{13-4\sqrt{3}}\)
I. \(\sqrt{7-4\sqrt{3}}\)\(-2\)
J.\(\sqrt{15-6\sqrt{6}}\)+\(\sqrt{33-12\sqrt{6}}\)
g: \(=\left|\sqrt{6}-1\right|=\sqrt{6}-1\)
h: \(=\left|2\sqrt{3}-1\right|=2\sqrt{3}-1\)
l: \(=\left|2-\sqrt{3}\right|-2=2-\sqrt{3}-2=-\sqrt{3}\)
j: \(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
\(\sqrt{15+6\sqrt{6}}-\sqrt{33-12\sqrt{6}}\)
\(\sqrt{15+6\sqrt{6}}-\sqrt{33-12\sqrt{6}}\)
\(\Leftrightarrow\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(\Leftrightarrow3+\sqrt{6}-2\sqrt{6}+3\)
\(\Leftrightarrow6-\sqrt{6}\)
a : \(\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
b : \(\sqrt{33-12\sqrt{6}}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
c : \(\sqrt{7-2\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|\)
\(=\sqrt{2}-1+2-\sqrt{2}\)
\(=1\)
b) \(\sqrt{33-12\sqrt{6}}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2\sqrt{6}\right)^2-2\cdot2\sqrt{6}\cdot3+3^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\left|2\sqrt{6}-3\right|-\left|5-2\sqrt{6}\right|\)
\(=2\sqrt{6}-3-5+2\sqrt{6}\)
\(=4\sqrt{6}-8\)
c) \(\sqrt{7-2\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}+\sqrt{3^2-2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(3-\sqrt{6}\right)^2}\)
\(=\left|\sqrt{6}-1\right|+\left|3-\sqrt{6}\right|\)
\(=\sqrt{6}-1+3-\sqrt{6}\)
\(=2\)
\(a,\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1}+\left|2-\sqrt{2}\right|\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}+2-\sqrt{2}\)
\(=\left|\sqrt{2}-1\right|+2-\sqrt{2}\)
\(=\sqrt{2}-1+2-\sqrt{2}\)
\(=1\)
\(---\)
\(b,\sqrt{33-12\sqrt{6}}-\sqrt{\left(5-2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2\sqrt{6}\right)^2-2\cdot2\sqrt{6}\cdot3+3^2}-\left|5-2\sqrt{6}\right|\)
\(=\sqrt{\left(2\sqrt{6}-3\right)^2}-5+2\sqrt{6}\)
\(=\left|2\sqrt{6}-3\right|-5+2\sqrt{6}\)
\(=2\sqrt{6}-3-5+2\sqrt{6}\)
\(=4\sqrt{6}-8\)
\(---\)
\(c,\sqrt{7-2\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}+\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot3+3^2}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)
\(=\left|\sqrt{6}-1\right|+\left|\sqrt{6}-3\right|\)
\(=\sqrt{6}-1+3-\sqrt{6}\)
\(=2\)
#\(Toru\)
Chứng minh đẳng thức : \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{6}\)
\(\sqrt{9-6\sqrt{6}+6}+\sqrt{9+6\sqrt{6}+6}\\ =\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3+\sqrt{6}\right)^2}=6\)
sửa lại lúc nhìm nhầm
\(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{24-12\sqrt{6}+3}\\ =3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
\(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{24-12\sqrt{6}+3}\\ =3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Đây là sửa lại ko phải chứng minh đâu nhé
\(\sqrt{15-\sqrt{216}+\sqrt{33-12\sqrt{6}}}\)
= 2 căn 6 - 3 + 3 - căn 6
= căn 6
Cho mình xin 1 tick nha trang
\(\sqrt{15-\sqrt{216}+\sqrt{33-12\sqrt{6}}}\)
\(=\sqrt{15-6\sqrt{6}+\sqrt{\left(2\sqrt{3}\right)^2-2\cdot2\sqrt{2}\cdot3+3^2}}\)
\(=\sqrt{15-6\sqrt{6}+\sqrt{\left(2\sqrt{3}-3\right)^2}}\)
\(=\sqrt{15-6\sqrt{6}+\left|2\sqrt{3}-3\right|}\)
\(=\sqrt{15-6\sqrt{6}+2\sqrt{3}-3}\)
\(=\sqrt{12-6\sqrt{6}+2\sqrt{3}}\)
Chứng minh đẳng thức: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
rut gon
C = \(\sqrt{15-6\sqrt{6}+\sqrt{33-12\sqrt{6}}}\)
tui hướng dẫn thui nha,,,,\(\sqrt{33-12\sqrt{6}}=\sqrt{24-2.2\sqrt{6}.3+9}=\sqrt{\left(2\sqrt{6}-3\right)^2}=2\sqrt{6}-3\)
ấy dễ ko???,,,bạn lm tương tự típ nhá,,,,