Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Phươngk9
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 22:24

a:

Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)

Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:

\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)

=>-3=-3(đúng)

vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua

b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)

\(=2mx+x+m-2\)

\(=m\left(2x+1\right)+x-2\)

Điểm mà (d) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)

Trần Thị Kim Ngân
Xem chi tiết
Nguyễn Thị Ngọc Trinh
7 tháng 11 2017 lúc 12:15

Bài 3 làm sao v ạ?

DŨNG
Xem chi tiết
Linh Nguyễn
1 tháng 3 2022 lúc 21:34

???

Thái Hưng Mai Thanh
1 tháng 3 2022 lúc 21:34

what?

Dark_Hole
1 tháng 3 2022 lúc 21:36

e đồng ý gì thế =)

Nguyễn Thùy Trang
Xem chi tiết
Hà Kiều Anh
Xem chi tiết
Thành
17 tháng 9 2021 lúc 21:53

9T1

Thành
17 tháng 9 2021 lúc 21:54

9T1

hưng đỗ
Xem chi tiết
Nguyễn Đức Trí
23 tháng 9 2023 lúc 7:46

a) \(\left(d\right):y=\left(m-2\right)x+m+3\)

Gọi \(A\left(x_o;y_o\right)\) là điểm cố định mà \(\left(d\right)\) đi qua, nên ta có :

\(y_o=\left(m-2\right)x_o+m+3,\forall m\in R\)

\(\Leftrightarrow y_o=mx_o-2x_o+m+3,\forall m\in R\)

\(\Leftrightarrow mx_o+m+2x_o+y_o-3=0,\forall m\in R\)

\(\Leftrightarrow\left(x_o+1\right)m+\left(2x_o+y_o-3\right)=0,\forall m\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+1=0\\2x_o+y_o-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-1\\y_o=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)

Vậy Với mọi m, đường thẳng \(\left(d\right)\) luôn đi qua điểm cố định \(A\left(-1;5\right)\)

b) Gọi \(\left\{{}\begin{matrix}\left(d\right)\cap Ox=A\\\left(d\right)\cap Oy=B\end{matrix}\right.\)

Tọa độ điểm \(A\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\y=\left(m-2\right)x+m+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2-m}\\y=0\end{matrix}\right.\)

\(\Rightarrow A\left(\dfrac{m+3}{2-m};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m+3}{2-m}\right)^2}=\left|\dfrac{m+3}{2-m}\right|\)

Tọa độ điểm \(B\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(m-2\right)x+m+3\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=m+3\end{matrix}\right.\) \(\Rightarrow B\left(0;m+3\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+3\right)^2}=\left|m+3\right|\)

\(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA.OB=2\)

\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|.\left|m+3\right|=4\)

\(\Leftrightarrow\left(m+3\right)^2=4\left|2-m\right|\left(1\right)\)

\(TH1:2-m>0\Leftrightarrow m< 2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(2-m\right)\)

\(\Leftrightarrow m^2+6m+9=8-4m\)

\(\Leftrightarrow m^2+10m+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\left(tm\right)\\m=-5-2\sqrt[]{6}\left(tm\right)\end{matrix}\right.\)

\(TH2:2-m< 0\Leftrightarrow m>2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(m-2\right)\)

\(\Leftrightarrow m^2+6m+9=4m-8\)

\(\Leftrightarrow m^2+2m+17=0\)

\(\Leftrightarrow\) Phương trình vô nghiệm

Vậy \(\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\\m=-5-2\sqrt[]{6}\end{matrix}\right.\) thỏa mãn đề bài

Chan
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 16:34

Giả sử điểm cố định mà (d) luôn đi qua có tọa độ \(M\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m, ta luôn có:

\(y_0=\left(2m+1\right)x_0+m-2\)

\(\Leftrightarrow m\left(2x_0+1\right)+x_0-y_0-2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\x_0-y_0-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy với mọi m thì (d) luôn đi qua điểm cố định có tọa độ \(\left(-\dfrac{1}{2};-\dfrac{5}{2}\right)\)

hai anh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 8 2021 lúc 19:53

Giả sử đường thẳng d luôn đi qua điểm cố định  \(I\left(x_0;y_0\right)\) \(\Rightarrow\) với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0-m+2\)

\(\Leftrightarrow m\left(x_0-1\right)+x_0-y_0+2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0-1=0\\x_0-y_0+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=1\\y_0=3\end{matrix}\right.\)

Vậy  \(I\left(1;3\right)\)

Nguyễn Duy Khánh
Xem chi tiết
Buddy
10 tháng 2 2021 lúc 16:34

kiểm tra lại đề nhé lỗi quá