ΔABC đều cạnh 2a AH là đường cao
1. \(\overrightarrow{AB}\).\(\overrightarrow{AC}\)
Cho tam gác ABC đều cạnh a, đường cao AH. tính các tích vô hướng
\(a,\overrightarrow{AB}.\overrightarrow{AC}\)
b,\(\overrightarrow{AH}.\overrightarrow{AC}\)
Cho tam giác ABC đều cạnh a, AH là đường cao. Tính:
a) \(\overrightarrow {CB} .\overrightarrow {BA} \)
b) \(\overrightarrow {AH} .\overrightarrow {BC} \)
a) Vẽ vecto \(\overrightarrow {BD} = \overrightarrow {CB} \). Ta có:
\((\overrightarrow {CB} ,\overrightarrow {BA} ) = (\overrightarrow {BD} ,\overrightarrow {BA} ) = \widehat {DBA} = {120^o}\)
Vậy \(\overrightarrow {CB} .\overrightarrow {BA} = \left| {\overrightarrow {CB} } \right|.\left| {\overrightarrow {BA} } \right|\cos (\overrightarrow {CB} ,\overrightarrow {BA} ) = a.a.\cos {120^o} = {a^2}.\left( { - \frac{1}{2}} \right) = - \frac{{{a^2}}}{2}.\)
b) Vì \(AH \bot BC\) nên \[(\overrightarrow {AH} ,\overrightarrow {BC} ) = {90^o}\], suy ra \(\cos (\overrightarrow {AH} ,\overrightarrow {BC} ) = \cos {90^o} = 0.\)
Vậy \(\overrightarrow {AH} .\overrightarrow {BC} = \left| {\overrightarrow {AH} } \right|.\left| {\overrightarrow {BC} } \right|.\cos (\overrightarrow {AH} ,\overrightarrow {BC} ) = 0.\)
Cho hình thang vuông ABCD có đường cao AB=2a, cạnh đáy AD=a và BC=3a. Gọi M là điểm trên đoạn AC sao cho \(\overrightarrow{AM}=k\overrightarrow{AC}\). Tìm k để \(\overrightarrow{BM}\perp\overrightarrow{CD}\)
Cho tam giác đều ABC, AB = 2a. Gọi M là trung điểm của cạnh BC.
a, Chứng minh rằng: \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
b, Tính \(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|\) theo a?
c, Tìm vị trí điểm N thỏa mãn: \(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=\overrightarrow{0}\)
Có vẻ không đúng.
Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)
\(\Leftrightarrow M\equiv B\) (Vô lí)
Hình vẽ:
a, Chứng minh \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{0}\)
Ta có \(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{BM}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{BM}+\overrightarrow{MB}=\overrightarrow{0}\)
b, Gọi H là trung điểm \(MC\)
Ta có \(AM=\sqrt{AC^2-MC^2}=\sqrt{4a^2-a^2}=a\sqrt{3}\)
\(AH=\sqrt{AM^2+MH^2}=\sqrt{\left(a\sqrt{3}\right)^2+\left(\dfrac{a}{2}\right)^2}=a.\dfrac{\sqrt{13}}{2}\)
\(\left|\overrightarrow{AM}+\overrightarrow{AC}\right|=\left|2\overrightarrow{AH}\right|=2AH=a\sqrt{13}\)
c, Gọi D là trung điểm AB
\(3\overrightarrow{NA}+3\overrightarrow{NB}+2\overrightarrow{NC}=3\left(\overrightarrow{NA}+\overrightarrow{NB}\right)+2\overrightarrow{NC}=6\overrightarrow{ND}+2\overrightarrow{NC}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{NC}=3\overrightarrow{DN}\)
Vậy N thuộc đoạn CD sao cho \(CN=\dfrac{3}{4}CD\)
Cho tam giác đều ABC có H là trung điểm của cạnh BC. Tìm các góc:
\(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right),\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right),\left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right),\left( {\overrightarrow {BH} ,\overrightarrow {BC} } \right),\left( {\overrightarrow {HB} ,\overrightarrow {BC} } \right)\).
+) \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {ABC} = 60^\circ \)
+) Dựng hình bình hành ABCD, ta có: \(\overrightarrow {AD} = \overrightarrow {BC} \)
\( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD} = 120^\circ \)
+), Ta có: ABC là tam giác đều, H là trung điểm BC nên \(AH \bot BC\)
\(\left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AH} ,\overrightarrow {AD} } \right) = \widehat {HAD} = 90^\circ \)
+) Hai vectơ \(\overrightarrow {BH} \) và \(\overrightarrow {BC} \)cùng hướng nên \(\left( {\overrightarrow {BH} ,\overrightarrow {BC} } \right) = 0^\circ \)
+) Hai vectơ \(\overrightarrow {HB} \) và \(\overrightarrow {BC} \)ngược hướng nên \(\left( {\overrightarrow {HB} ,\overrightarrow {BC} } \right) = 180^\circ \)
Cho ΔABC có trọng tâm G, H là điểm đối xứng với B qua G, M là trung điểm BC.
C/M 1) \(\overrightarrow{AH}\) = \(\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)
2) \(\overrightarrow{CH}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)
3) \(\overrightarrow{MH}=\dfrac{1}{6}\overrightarrow{AC}-\dfrac{5}{6}\overrightarrow{AB}\)
H đối xứng B qua G \(\Rightarrow\overrightarrow{BH}=2\overrightarrow{BG}=2\left(\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\right)=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)
\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{MH}=\overrightarrow{MA}+\overrightarrow{AH}=-\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)
\(=-\dfrac{5}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
Cho tam giác nhọn ABC, kẻ đường cao AH. Chứng minh rằng:
a) \(\overrightarrow {AB} .\overrightarrow {AH} = \overrightarrow {AC} .\overrightarrow {AH} \)
b) \(\overrightarrow {AB} .\overrightarrow {BC} = \overrightarrow {HB} .\overrightarrow {BC} \)
Ta có: \(AH \bot CB \Rightarrow (\overrightarrow {AH} ,\overrightarrow {CB} ) = {90^o} \Leftrightarrow \cos (\overrightarrow {AH} ,\overrightarrow {CB} ) = 0 \Leftrightarrow \overrightarrow {AH} .\overrightarrow {CB} = 0\)
a) \(\overrightarrow {AB} .\overrightarrow {AH} - \overrightarrow {AC} .\overrightarrow {AH} = (\overrightarrow {AB} - \overrightarrow {AC} ).\overrightarrow {AH} = \overrightarrow {CB} .\overrightarrow {AH} = 0\)
\( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AH} = \overrightarrow {AC} .\overrightarrow {AH} \)
b) \(\overrightarrow {AB} .\overrightarrow {BC} - \overrightarrow {HB} .\overrightarrow {BC} = (\overrightarrow {AB} - \overrightarrow {HB} ).\overrightarrow {BC} = (\overrightarrow {AB} + \overrightarrow {BH} ).\overrightarrow {BC} = \overrightarrow {AH} .\overrightarrow {BC} = 0\)
\( \Leftrightarrow \overrightarrow {AB} .\overrightarrow {BC} = \overrightarrow {HB} .\overrightarrow {BC} \)
Cho ΔABC, gọi M, N lần lượt là trung điểm cảu 2 cạnh AB và AC. Mệnh đề nào đúng dưới đây?
A.\(\overrightarrow{MN}\) VÀ \(\overrightarrow{AC}\) cùng phương
B.\(\overrightarrow{MN}\)và\(\overrightarrow{BC}\) cùng phương
C.\(\overrightarrow{MN}\)và\(\overrightarrow{AB}\)cùng phương
D.\(\overrightarrow{MN}\)và\(\overrightarrow{BN}\)cùng phương
M, N là trung điểm AB và AC nên MN là đường trung bình tam giác ABC
\(\Rightarrow MN||BC\Rightarrow\overrightarrow{MN}\) và \(\overrightarrow{BC}\) cùng phương
Cho hình thang vuông ABCD, đường cao AB=2a, đáy lớn BC=3a, đáy nhỏ AD=2a
a) Tính \(\overrightarrow{AB}.\overrightarrow{CD},\overrightarrow{BD}.\overrightarrow{DC},\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I là trung điểm CD. Tính \(\overrightarrow{AI}.\overrightarrow{BD}\). Suy ra góc giữa AI và BD