chứng minh (a-b)^3-3ab(a+b)=a^3+b^3
nhanh để tick nha
cho a+b=1 chứng minh a^3 +b^3 = 1 +3ab
nhanh để tick nha
Ta có:a+b=1
<=>(a+b)^3=1^3
<=>a^3+3a^2.b+3a.b^2+b^3=1
<=>a^3+b^3+3ab(a+b)=1
mà a+b=1=>a^3+b^3+3ab=1=>a^3+b^3=1-3ab(dpcm)
Ta có:a+b=1
<=>(a+b)^3=1^3
<=>a^3+3a^2.b+3a.b^2+b^3=1
<=>a^3+b^3+3ab(a+b)=1
mà a+b=1=>a^3+b^3+3ab=1=>a^3+b^3=1-3ab(dpcm)
Chứng minh rằng:
a, a3+b3= (a+b)3-3ab(a+b)
b, a3-b3= (a-b)3+3ab(a-b)
làm kiểu như vở bài tập nha
a) Biến đổi vế phải ta có::
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)
=>đpcm
b) Biến đổi vế phải ta có:
\(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2=a^3-b^3=VT\)
=>đpcm
ko chắc là kiểu mình làm có giống vở bạn trình bày ko nha.
a) Ta có:\(VP=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
= \(a^3+b^3=VT\)
Vậy a3+b3= (a+b)3-3ab(a+b)
b)Ta có:\(VP=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
= \(a^3-b^3=VT\)
Vậy a3+b3= (a+b)3-3ab(a+b)
Chứng minh các đẳng thức
a)a3+b3=(a+b)3 -3ab(a+b)
b)a3-b3=( a-b)3- 3ab(a-b)
a;BIến đổi vế phải ta có
(a + b)^3 - 3ab(a+b) = a^3 + 3a^2.b + 3ab^2 + b^3 - 3a^2.b - 3ab^2 = a^3 + b^3
VẬy VT = VP đẳng thức dược CM
b; tương tự
cuyển đổi vế phải
a, (a+b)3-3a(a+b)= a3+3a2b+3ab2+b3-3a2b-3ab2=a3+b3
b, (a-b)3+3ab(a-b)=a3-3a2b+3ab2-b3+3a2b-3ab2=a3-b3
Bài 1: Tìm số nguyên để 2n+3 chia hết cho 3n+6
Bài 2: Chứng minh các số sau nguyên tố cùng nhau:
a, 3n+4 và 2n+3
b,2n+5 và 4n+9
Bạn nào giải đầy đủ sẽ đc 4 tick nha.
Bài 2 :
a ) Gọi ƯCLN của 3n + 4 và 2n + 3 là d .
Ta có : 2n + 3 chia hết cho d .
3n + 4 chia hết cho d .
\(\Rightarrow\) 2n . 3 + 3 . 3 chia hết cho d .
3n . 2 + 4 . 2 chia hết cho d .
\(\Rightarrow\) 6n + 9 chia hết cho d .
6n + 8 chia hết cho d .
\(\Rightarrow\) ( 6n + 9 ) - ( 6n + 8 ) chia hết cho d .
\(\Rightarrow\) 1 chia hết cho d .
\(\Rightarrow\) d = 1
b)Gọi ƯCLN( 2n+5, 4n+9) là d
Ta có: 2n + 5 \(⋮\)d
4n + 9 \(⋮\)d
\(\Rightarrow\)2n + 5 . 2 \(⋮\)d
4n + 9 . 1 \(⋮\)d
\(\Rightarrow\)4n + 10 \(⋮\)d
4n + 9 \(⋮\) d
\(\Rightarrow\left(4n+10\right)-\left(4n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 2n + 5 và 4n + 9 nguyên tố cùng nhau.
Bài 2
a) Gọi d là ƯCLN (3n+4; 2n+3) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}3n+4⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+4\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+8⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
=> ĐPCM
b) làm tương tự câu a)
Ta có:
\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
Mà \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
\(\dfrac{1}{3}\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)=\dfrac{1}{3}\left(\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\right)\)
\(=\dfrac{1}{3}.3.\overrightarrow{GG'}=\overrightarrow{GG'}\)
C/m : a) a^3 + b^3 = ( a + b ) ^ 3 - 3ab ( a + b ) b) a^3 - b^3 = ( a - b ) ^ 3 + 3ab ( a - b ) ( toán 8 nha )
a, VP = (a + b)3 - 3ab(a + b)
= a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2
= a3 + b3 = VT
b, VP = (a - b)3 + 3ab(a - b)
= a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2
= a3 - b3 = VT
C/m : a3 + b3 = ( a + b ) 3 - 3ab( a + b )
Ai làm trước và đúng mik tick nha
Ta có: a^3+b^3 = (a+b)(a^2-ab+b^2)
= a^3-a^2b+ab^2+a^2b-ab^2+b^3
= a^3-3a^2b+2a^2b+3ab^2-2ab^2+3a^2b-2a^2b-3ab^2+2ab^2+b^3
= (a^3+3a^2b+3ab^2+b^3)-(3a^2b+3ab^2)+(2a^2b-2a^2b)+(2ab^2-2ab^2)
= (a+b)^3-3ab(a+b) (đpcm)
a3 + b3 = ( a + b ) 3 - 3ab( a + b )
a3 + b3 =a^3+3a^2b+3ab^2-3a^b-3ab^2
a3 + b3 =a^2+b^2(đpcm)
^ là mũ nha bn
TEST
a)Chứng minh rằng : ab +ba chia hết cho 11
b)Chứng tỏ ko tồn tại hai số tự nhiên và a và b (a>b) để (a-b)x(a+b)=2010
c)Cho A=1+3+32+33+.......+32009+32010.Hãy viết 2xA+1 dưới dạng một lũy thừa.
Chứng minh các đẳng thức:
a) a 3 + b 3 = ( a + b ) 3 − 3 a b ( a + b ) ;
b) a 3 − b 3 = ( a − b ) 3 + 3 ab ( a − b ) .