Tìm n thuộc N:
a) \(A=\frac{n^4+3n^3+2n^2+6n-2}{n^2+2}\) có giá trị nguyên.
b)\(B=n^5-n+2\) là số chính phương \(\left(n\ge2\right)\)
Tìm n thuộc N:
a) \(A=\frac{n^4+3n^3+2n^2+6n-2}{n^2+2}\) là giá trị nguyên.
b)\(B=n^5-n+2\)là số chính phương.\(\left(n\ge2\right)\)
a/
\(A=\frac{n^2\left(n^2+2\right)+3n\left(n^2+2\right)-2}{n^2+2}=n^2+3n-\frac{2}{n^2+2}\)
A nguyên => \(\frac{2}{n^2+2}\) nguyên \(\Rightarrow n^2+2\in\text{Ư}\left(2\right)=\left\{-1;1;2;-2\right\}\)
Do \(n^2+2\ge2\) nên \(n^2+2=2\Leftrightarrow n=0\)
Vậy n = 0 thì A nguyên.
b/ Ta chứng minh \(B=n^5-n+2\) không là số chính phương với mọi n.
Xét \(M=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Nhận xét: n và n+1 là 2 số nguyên liên tiếp nên tích của chứng chia hết cho 2 => M⋮2
+Nếu n⋮5 thì M⋮5.
+Nếu n chia 5 dư 1 thì (n-1)⋮5 => M⋮5.
+Nếu n chia 5 dư 2 thì n2 chia 5 dư 4 => (n2+1)⋮5 => M⋮5.
+Nếu n chia 5 dư 3 thì n2 chia 5 dư 9 tức dư 4 => (n2+1)⋮5 => M⋮5
+Nếu n chia 5 dư 4 thì (n+1)⋮5 => M⋮5
Vậy M⋮5
Suy ra M⋮10 với mọi số tự nhiên n
=> M có tận cùng là 0.
=> B = M+2 có tận cùng là 2.
Mà số chính phương chỉ có tận cùng là 0; 1; 4; 6; 9
=> B không phải là số chính phương với mọi n.
Tìm số tự nhiên n để:
a, A=n3-n2+n-1 là số nguyên tố
b, B=\(\frac{n^4+3n^3+2n^2+6n-2}{n^2+2}\)là số nguyên
c, C=n5-n+2 là số chính phương (n>=20)
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Tìm n thuộc N để C=n4 + 3n3 +2n2+ 6n-2 / n2 +2 có giá trị là số nguyên
1/ Tính
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\)
2/ Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)có giá trị nguyên
3/ CMR : \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi n thuộc N
Đặt d=ƯCLN(12n+1;30n+2)
=>12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản
Bài 1:
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)
\(=\frac{9}{41}-\frac{206}{375}=\)
Bài 2:
\(\frac{6n+99}{3n+4}=\frac{6n+8}{3n+4}+\frac{91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
Để \(\frac{6n+99}{3n+4}\) nguyên thì \(\frac{91}{3n+4}\) nguyên <=> 91 chia hết cho 3n+4
<=>3n+4 \(\inƯ\left(91\right)=\left\{-91;-13;-7;-1;1;13;17;91\right\}\)
<=>3n\(\left\{-95;-17;-11;-5;-3;9;13;87\right\}\)
<=>\(n\in\left\{-\frac{95}{3};-\frac{17}{3};-\frac{11}{3};-\frac{5}{3};-1;3;\frac{13}{3};29\right\}\)
n là số tự nhiên nên \(n\in\left\{3;29\right\}\)
a; lim\(\frac{\sqrt{6n^4+n+1}}{2n^2+1}\)
b; lim \(\frac{\left(n+1\right)\left(2n+1\right)^2\left(3n+1\right)^3}{n^2\left(n+2\right)^2\left(1-3n\right)^2}\)
a) \(lim\frac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}\)
b) \(lim\frac{\left(2n-1\right)\left(n+1\right)\left(3n+4\right)}{\left(5-6n\right)^3}\)
c) \(lim\left(\sqrt{n^2+5n+1}-\sqrt{n^2-2}\right)\)
d) \(lim\frac{5\cdot3^n-6^{n+1}}{4\cdot2^n+6^n}\)
e) \(lim\left(-2n^3-3n^2+5n-2020\right)\)
a/ \(=lim\frac{\left(-\frac{2}{3}\right)^n+1}{-2.\left(-\frac{2}{3}\right)^n+3}=\frac{1}{3}\)
b/ \(=lim\frac{\left(2-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)}{\left(\frac{5}{n}-6\right)^3}=\frac{2.1.3}{\left(-6\right)^3}=-\frac{1}{36}\)
c/ \(=lim\frac{5n+3}{\sqrt{n^2+5n+1}+\sqrt{n^2-2}}=\frac{5+\frac{3}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{2}{n}}}=\frac{5}{1+1}=\frac{5}{2}\)
d/ \(=lim\frac{5.\left(\frac{1}{2}\right)^n-6}{4.\left(\frac{1}{3}\right)^n+1}=\frac{-6}{1}=-6\)
e/ \(=-n^3\left(2+\frac{3}{n}-\frac{5}{n^2}+\frac{2020}{n^3}\right)=-\infty.2=-\infty\)
Tìm n thuộc N, để các phân số sau có giá trị là số tự nhiên
a) 3n + 5/ n+1
b) n+13/ n+1
c) 3n +15/ n+1
d) 2n+13/ n-1
e) 3n + 5/ n-2
f) 6n +5/2n+1
a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)
\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
CMR: vs mọi n thuộc Z thì
a) \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2⋮5\)
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)⋮2\)
a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)
\(=-n^2+5n\)
Cái này nếu n=1 thì ko thỏa mãn nha bạn
b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)
\(=49n+55\)
Nếu n là số lẻ thì 49n+55 chia hết cho 2
Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn
\(lim\left(\sqrt[3]{n-n^3}+\sqrt{n^2+3n}\right)\)
\(lim\left(\sqrt{n-2\sqrt{n}}-\sqrt{n+4}\right)\)
\(lim\left(\sqrt[3]{3n^2+n^3}-n\right)\)
\(lim\left(\sqrt[3]{n^3+6n}-\sqrt{n^2-4n}\right)\)
\(lim\frac{-3^{n+1}+4^{n+1}}{5.3^n+3.2^{2n-1}}\)
\(lim\left(\frac{3^{2n}-5^{n+1}+7^{n+1}}{3^{n+2}+5^n+2^{3n+2}}\right)\)
\(lim\left(\frac{6^{n+1}+3^{2n+5}}{3^{2n+3}-2^{2n-1}}\right)\)
a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)
\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)
\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)
b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)
c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)
d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)
\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)
e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)
f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)
g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)