CMR: \(\frac{2-5\sqrt{x}}{\sqrt{x}+3}
\(e.B=\frac{3+\sqrt{x}}{4+\sqrt{x}}\left(0\le x< 1\right)\)
CMR: B < \(\frac{4}{5}\)
\(c.C=\frac{\sqrt{x}+1}{\sqrt{x}+3};D=\frac{\sqrt{x}+2}{\sqrt{x}+4}\left(x\ge0\right)\)
CMR : C<D
\(d.\frac{\sqrt{x}}{\sqrt{x}+\sqrt{x}+4}\left(x>0\right)\)
CMR : \(D< \frac{1}{4}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
CMR : biểu thức sau không phụ thuộc vào x :
A = \(\frac{\sqrt{x}+\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
Ta có \(\sqrt[3]{2-\sqrt{3}}\times\sqrt[6]{7+4\sqrt{3}}\)
= \(\sqrt[3]{2-\sqrt{3}}\times\sqrt[3]{2+\sqrt{3}}\)
= 1
Và \(\sqrt[4]{9-4\sqrt{5}}\times\sqrt{2+\sqrt{5}}\)
= \(\sqrt{\sqrt{5}-2}\times\sqrt{2+\sqrt{5}}\)
= 1
Vậy A = \(\frac{\sqrt{x}+1-x}{1+\sqrt{x}}\)\(=1-\frac{x}{1+\sqrt{x}}\)
Vậy A phải phụ thuộc vào x. Có thể đề sai
\(CMR\)
\(\frac{5\sqrt{x}-2}{5\sqrt{x}+3}\le\frac{2}{3}\)
Giải giúp mik vs đap cần gấp . Cảm ơn mn. Giải cho mik bài 1 cx đc
1/ Rút gọn
A=\(\sqrt{7}-4\sqrt{3}+\sqrt{4}-2\sqrt{3}\)
B=\(\left(2+\frac{5-\sqrt{5}}{\sqrt{5}-1}\right)\) \(\left(2-\frac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
C=\(\left(\sqrt{3}+1\right)\) \(\left(\frac{\sqrt{14}-6\sqrt{3}}{5+\sqrt{3}}\right)\)
2/Cho P=\(\left(\sqrt{x-\frac{1}{\sqrt{x}}}\right)\):\(\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a/ cmr: P>0, V x >0, x\(\ne\)1
b/Tính GT P khi x\(\frac{2}{2+\sqrt{3}}\)
giải giùm mik bài này
Rút gọn
A=\(\sqrt{7}-4\sqrt{3}+\sqrt{4}-2\sqrt{3}\)
B=(\(2+\frac{5-\sqrt{5}}{\sqrt{5}-1}\)) (\(2-\frac{5+\sqrt{5}}{\sqrt{5}+1}\))
C=(\(\sqrt{3}+1\))\(\frac{\sqrt{14}-6\sqrt{3}}{5+\sqrt{3}}\)
Cho P=(\(\sqrt{x}-\frac{1}{\sqrt{x}}):\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\))
a)CmR: P >0,V x>o, x≠1
b) Tính P khi x=\(\frac{2}{2+\sqrt{3}}\)
c)Tìm x để P\(\sqrt{x}\) =6\(\sqrt{x}\) - 3-\(\sqrt{x}-4\)
Bạn ơi thứ nhất là làm ơi đặt câu hỏi hẳn hoi không thừa không thiếu đây bạn bài 1, 2 còn không cách ra đề bài thừa nhiều gây khó đọc và làm có khi là sai sẽ mất công người giải và chú ý là một câu hỏi thì chỉ nên hỏi một bài hoặc cụm câu liên quan tới nhau nha
cho \(P\left(x\right)=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}-3}{\sqrt{x}+3}\)
Cmr: P(x) ≤ \(\frac{2}{3}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
Ta có:
$P(x)=\frac{15\sqrt{x}-11}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(3\sqrt{x}-2)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(2\sqrt{x}-3)(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}$
$=\frac{15\sqrt{x}-11-(3\sqrt{x}-2)(\sqrt{x}+3)-(2\sqrt{x}-3)(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}$
$=\frac{-5x+13\sqrt{x}-8}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{(8-5\sqrt{x})(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}$
$=\frac{8-5\sqrt{x}}{\sqrt{x}+3}$
Với $P=\frac{8-5\sqrt{x}}{\sqrt{x}+3}$ thì chưa đủ cơ sở để khẳng định $P(x)\leq \frac{2}{3}$
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = \(\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}\)
Bài 2: Tìm các số thực \(x\geq 0\) sao cho E = \(\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}\) nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn \(\sqrt{x}+\sqrt{y-2}=2\) và \(\sqrt{y+1}+\sqrt{z-3}=3\) và \(\sqrt{z+5}+\sqrt{x+3}=5\)
Bài 4: CMR \(2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3\)
Bài 5: CMR \(\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2 \)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Ta có \(\sqrt{x}+\sqrt{y-2}=2\)=> \(\left(\sqrt{x}-1\right)+\left(\sqrt{y-2}-1\right)=0\)
=> \(\frac{x-1}{\sqrt{x}+1}+\frac{y-3}{\sqrt{y-2}+1}=0\left(1\right)\)
=>Tương tự với các PT còn lại
\(\frac{y-3}{\sqrt{y+1}+2}+\frac{z-4}{\sqrt{z-3}+1}=0\left(2\right)\)
\(\frac{z-4}{\sqrt{z+5}+3}+\frac{x-1}{\sqrt{x+3}+2}=0\left(3\right)\)
Ta thấy \(x=1;y=3;z=4\)là nghiệm của 3 PT
Với \(x\ne1;y\ne3;z\ne4\)
Theo nguyên lí diricle ta luôn có :
trong 3 số x-1;y-3;z-4 luôn có 2 số cùng dấu
=> 2 trong 3 PT trên vô nghiệm
Vậy x=1;y=3;z=4
Bài 1: Cho a = \(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
CMR a2 -2a-2=0
Bài 2 Cho B = \(\frac{1+\sqrt{x+1}}{x+1}+\frac{1+\sqrt{1-x}}{x-1}\)
Tính B sau khi thay x = a = \(\frac{\sqrt{3}}{2}\)
Bài 3: hãy biểu diễn \(\sqrt{\frac{3+\sqrt{5}}{2}}\) thành a+b\(\sqrt{5}\) với a và b thuộc Q
Bài 1
a > 0
\(a^2=3+\sqrt{5+2\sqrt{3}}+3-\sqrt{5+2\sqrt{3}}\) \(+2\sqrt{3^2-\left(5+2\sqrt{3}\right)}\)
= \(6+2\sqrt{4-2\sqrt{3}}=6+2\left(\sqrt{3}-1\right)=4+2\sqrt{3}\) = \(\left(\sqrt{3}+1\right)^2\)
=> a = \(\sqrt{3}+1\)
Thay vào : a2 -2a - 2 = \(4+2\sqrt{3}-2\left(\sqrt{3}+1\right)-2=0\) (đpcm)